首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
High molecular weight poly(dimethylsiloxane)/semicrystalline cycloaliphatic polyester segmented copolymers based on dimethyl-1,4-cyclohexane dicarboxylate were prepared and characterized. The copolymers were synthesized using a high trans content isomer that afforded semicrystalline morphologies. Aminopropyl-terminated poly(dimethylsiloxane) (PDMS) oligomers of controlled molecular weight were synthesized, end capped with excess diester to form a diester-terminated oligomer, and incorporated via melt transesterification step reaction copolymerization. The molecular weight of the polysiloxane and chemical composition of the copolymer were systematically varied. The polysiloxane segment was efficiently incorporated into the copolymers via an amide link and its structure was unaffected by low concentrations of titanate transesterification catalyst, as shown by control melt experiments. The homopolymer and copolymers were characterized by solution, thermal, mechanical, and surface techniques. The segmented copolymers were microphase separated as determined by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by transmission electron microscopy (TEM). It was demonstrated that relatively short poly(dimethylsiloxane) segment lengths and compositions were required to maintain single phase melt polymerization conditions. This was, in fact, the key to the successful preparation of these materials. The copolymers derived from short poly(dimethylsiloxane) segments demonstrated good mechanical properties, melt viscosities representative of single phase polymer melts, and were easily compression molded into films. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3495–3506, 1997  相似文献   

2.
A novel segmented polyurethane/clay (PU/clay) nanocomposite based on poly(caprolactone), diphenylmethane diisocyanate, butanediol, and poly(caprolactone)/clay prepolymer was synthesized as evidenced by FTIR and X-ray diffraction studies. Poly(caprolactone)/clay (PCL/clay) prepolymer was first synthesized in a nanocomposite form as confirmed by X-ray diffraction. X-ray diffraction study showed that PU/clay contained crystalline structure due to the presence of PCL/clay. In mechanical properties, about 1.4% PCL/clay in PU/clay resulted in a large increase in the elongation of PU/clay. However, when the amount of PCL/clay was 4.2%, the elongation of PU/clay was reduced drastically. This behavior indicated that PU/clay can be transformed from an elastomer to a thermoplastic material as the amount of PCL/clay in PU/clay increased. Additionally, the lap shear stress of PU/clay was at least three times that of neat PU as a result of the PCL/clay component. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2225–2233, 1999  相似文献   

3.
A series of semi-aromatic poly(imide-ester)s were prepared by the direct polycondensation of N-(4-carboxyphenyl) trimellitimide or N-(3-carboxyphenyl) trimellitimide with various pyromellitic diimide diols containing methylene spacer = 2–6, respectively. The effect of the amount of LiCl, pyridine, and the kinds of condensation agents on the direct polycondensation were studied. The structures and thermal properties of the synthesized poly(imide-ester)s were examined by FTIR spectrum, wide-angle x-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermal optical polarized microscopic observation, and thermogravimetric analysis (TGA). It is found that P1 series [derived from N-(4-carboxyphenyl) trimellitimide] with even number methylene spacer (n = 4, 6) exhibit smectic mesophase, but P2 series [derived from N-(3-carboxyphenyl) trimellitimide] do not show LC phase. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Binary blends of poly(ethylene terephtalate) (PET) and thermotropic liquid crystal polyester (TLCP) have been prepared by both solution and melt blending methods. The TLCPs utilized were Vectra (Hoechst Celanese), TR-4, a TLCP synthesized in our laboratory, and a block copolymer consisting of three TR-4 units followed by three PET units. The phase behavior of the blends was studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and optical microscopy. The results show that none of the blends is miscible, but significant interactions exist between the PET phase and the TLCP phase in the case of TR-4 and TR-4 block copolymer blends. These interactions lead to a different nucleation mechanism in these blends compared to that in PET/Vectra.  相似文献   

5.
Two closely series of poly(ester imide)s had been synthesized by solution polycondensation of p‐phenylenebis(trimellitate) dianhydride with aliphatic diamines. The differential scanning calorimetry (DSC) traces of the most poly(ester imide)s exhibited two endotherms representing the solid state to anisotropic phase transition (Tm1) and the anisotropic to isotropic melt transition (Tm2), respectively. Observation under polarizing microscope and wide‐angle X‐ray diffraction (WAXD) measurements suggested that the anisotropic phase formed above the melting points (Tm1) had a smectic character. The thermogravimetric analyses (TGA) revealed that the thermal stabilities of the poly(ester imide)s were up to 350°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 211–218, 1999  相似文献   

6.
Three series of the thermotropic liquid crystalline copoly(imide-ester)s were prepared by direct polycondensation. The first two series of the copoly(imide-ester)s were synthesized from N-(4-carboxyphenyl) trimellitimide with N,N-di(hydroxypropyl) pyromellitic diimide and various aromatic diols. The third series of copoly(imide-ester)s were prepared by N-(4-carboxyphenyl) trimellitimide with various imide-diols (methylene spacer = 2–6) and phenyl hydroquinone. The structures and thermal properties of the synthesized poly(imide-ester)s were examined by FTIR spectrum, wide-angle x-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermal optical polarized microscope, and thermogravimetric analysis (TGA). The effects of the structures of the aromatic diols on the thermal properties of the resulting copoly(imide-ester)s were investigated. It was found that most of the copoly(imide-ester)s possessed excellent mesophase stabilities and thermostabilities. The mesophase stabilities of poly(imide-ester)s decreased with the increase of the size of lateral group, and the mesophase range increased with the increase of the amount of PhHQ. No significant odd-even effects were observed between the methylene spacer lengths and transition temperatures. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
New segmented aromatic poly(ether sulfone)-amide and poly(ether sulfone)-imide copolymers were synthesized by the chain extension of α,w-diamine-terminated poly(ether sulfone) oligomer with both aromatic dicarboxylic acid chlorides and tetracarboxylic dianhydrides, respectively. Crystallization of the poly(ether sulfone)unit was suppressed by the introduction of amide or imide linkage along the polymer backbone, giving amorphous copolymers that were +eadily soluble in various organic solvents. The copolymers had somewhat higher glass transition temperatures than the parent poly(ether sulfone). They afforded transparent and tough films by solution casting. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
Tin(ii) chloride selectively reduces the aromatic nitro group to the amino group, the azoxy group remaining intact. This allows the preparation of 2-(R-NNO-azoxy)anilines from 2-(R-NNO-azoxy)nitrobenzenes bearing electron-donating or weak electron-withdrawing substituents (Me or Br) in the benzene ring and alkyl substituents at the distal N atom of the azoxy group. The presence of electron-withdrawing substituents at the azoxy group (for example, CO2Et) leads to a change in the direction of the reaction resulting in selective reduction of the azoxy group to the hydrazo group.  相似文献   

9.
Four new epoxy monomers have been synthesized and characterized as part of a program to prepare novel liquid crystal thermoset (LCT) materials. Three of the new epoxy monomers contained a biphenyl mesogen and were not liquid crystalline (LC). The remaining epoxy monomer, which contained a 1,4-dibenzoyloxybenzene mesogen, was synthesized in an overall yield of 30% and displayed a broad (83°C) nematic liquid crystalline phase. The new liquid crystalline epoxy monomer was cured at 120°C and postcured at 175°C with a stoichiometric amount of 1,4-phenylenediamine. The thermal transitions of the resulting LCT were studied by differential scanning calorimetry (DSC), polarized light optical microscopy (POM), thermomechanical analysis (TMA), and wide angle x-ray diffraction (WAXD) as a function of cure time and temperature. A process characterization diagram was constructed which shows that LCTs based on this new LC monomer can be processed in the liquid crystalline phase over a broad range of times and temperatures. Qualitative agreement with previous epoxy LCT results was found, as LCT's with smectic phases and without clearing temperatures were observed at long cure times (high crosslink densities), whereas nematic phases with clearing temperatures predominated in networks at short cure times (low crosslink densities). © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Poly(trimethylene terephthalate)/poly(propylene glycol) (PTT/PPG) segmented random copolymers were synthesized by melt copolycondensation. The weight fraction of PPG blocks was ranged from 12.1 to 33.4 wt%, which was confirmed by 1H NMR spectroscopy. The result of wide‐angle X‐ray diffractometer indicated that all copolymers had the same crystal structure of PTT homopolymer at room temperature. At a determined crystallization temperature, ring‐banded spherulites could be observed in all copolymers samples, and the band spacing increased with the increase of PPG content. Morphologies of copolymers after nonisothermal crystallization process were strongly depended on the cooling rate. Well‐defined ring‐banded spherulites can be observed only at moderate cooling (20°C/min), while it was really hard to be observed at too low (2.5°C/min) or too high (by air‐quenching) cooling rate. Moreover, the size of spherulites decreased with the increase of cooling rate. Finally, different nonisothermal crystallization kinetics were adopt to analyze this copolymer system, and only the Mo method was suitable to describe this copolymer system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A trefoil-shaped liquid crystal containing an aromatic hetero-nucleus has been synthesized by the reaction of cyanuric chloride with 3,6-didecanoyl carbazole (DDC). The molecular structure was characterized by 1H NMR and 13C NMR spectroscopy, mass spectroscopy and elemental analysis. The core consists of 1,3,5-triazine directly linked to three carbazole groups. The trefoil-shaped conformation is suggested by molecular modelling. The mesophase was investigated using DSC, X-ray diffraction and polarizing optical microscopy. The X-ray diffraction pattern of a sample cooled slowly from the isotropic state showed sharp peaks in the small angle and wide angle regions implying the existence of a columnar phase with interand intra-columnar ordering. An unusual reticular texture similar to a cholesteric texture was observed.  相似文献   

12.
The synthesis of three cyclic imino ethers containing mesogenic groups attached to the heterocyclic unit through flexible spacers is described. Cationic ring-opening isomerization polymerization of two of them, i.e., 2-[4-(4-methoxy-4′-biphenyloxy)butyl]-2-oxazoline (MeOBiph-4-Oxz) and 2-[6-(4-methoxy-4′-biphenyloxy)hexyl]-2-oxazoline (MeOBiPh-6-Oxz) provided thermotropic liquid crystalline (LC) poly(N-acylethyleneimine)s, whereas the polymerization of 2-[4-(4-phenylphenoxy)butyl]-2-oxazoline (BiPh-4-Oxz) led to a crystalline polymer.  相似文献   

13.
14.
Poly[4-(4-hydroxyphenoxy) benzoic acid] was prepared by the bulk polycondensation of 4-(4-acetoxyphenoxy) benzoic acid. Polycondensation was conducted at 350°C for 3 h under a reduced pressure of 0.1 mmHg and gave a polymer with X?n of 255. The polymer was characterized by elemental analysis, IR spectroscopy, differential scanning calorimetry, and wide-angle X-ray measurement. The crystal/nematic and nematic/isotropic phase transition temperatures of polymer, which depend on the molecular weight, were observed at about 300°C and 410°C, respectively. The polymers with low molecular weights showed nematic textures above 300°C. This nematic/isotropic phase transition temperature is lower than that of poly (4-hydroxybenzoic acid). This thermal behavior of polymer comes from ether units, which increase the flexibility (the rotation or torsion of skeletal bonds) of the polymer chain. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
16.
Synthesis and characterisation of liquid crystalline (LC) Fe(II) complexes with ‘two-chain’-substituted poly(propylene imine) (PPI) dendrimeric ligand of the first to fifth generations are presented. Compounds were synthesised by complex formation between the metal salt and the corresponding dendrimeric ligands. The purity and structure were proved by different methods. The calculated amount of iron in the complexes was confirmed by the experimental data with a great degree of precision. Iron ions are incorporated into the dendrimer at two sites: at the border and inside of the dendrimeric core. A tetragonal coordination of iron was found. Mesomorphic properties of dendrimer iron(II) complexes were studied, a hexagonal columnar mesophase (Colh) was evaluated by the results of X-ray scattering. Upon excitation at absorption bands, iron dendrimeric complexes exhibit fluorescence properties.  相似文献   

17.
Three series of novel poly(amide-ester) (PAE) elastomers were prepared by direct poly-condensation from terephthalic acid (TPA), polyols (Mn = 1000 or 2000), and various diamines. The structures and thermal properties of the synthesized PAEs were examined by FTIR spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calo-rimetry (DSC), thermal optical polarized microscopy, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). The effects of kinds and amount of diamines and the molecular weight of polyols on the thermal properties of PAEs were studied. By introducing long flexible spacers (PE-1000 or PE-2000) into the polymer main chain, all polymers showed two-phase morphology under the thermal optical microscopic observation. It was interesting that most of the synthesized polymers exhibited only one melting transition corresponding to the soft segments. The melting transition of hard segments could not be detected due to decomposition of the soft segments. However, a thermotropic liquid crystalline PAE (TLCPAE) prepared from methylhydroquinone and 2-chloro-5-methyl-phenylenediamine with PE-1000 could be obtained by lowering the melting transition temperature of the hard segment. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Five new block copoly(imide siloxane)s have been prepared by reacting two different diamines, 4,4″-bis(p-aminophenoxy)-3,3″-trifluoromethyl terphenyl (APTTFT) and amino-propyl terminated polydimethylsiloxane (APPS), separately with 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride); BPADA. The reactions were conducted by a two pot solution imidization technique. The diamine APTTFT and the dianhydride BPADA composed the hard block segment while APPS and BPADA composed the soft block segment. The soft and hard blocks of different block lengths were generated by different stoichiometric imbalance in two different flasks and the final polymers were obtained by reacting both the blocks together. Different block copoly(imide siloxane)s were prepared on increasing the hard block lengths (DP) from 7 to 12, 18, 23 and 28 and the soft block lengths (DP) from 4 to 6, 8, 10 and 12, respectively. The resulting polymers have been well characterized by NMR, DSC and DMA techniques. The properties of the block copolymers were compared with the analogous random copolymers and homopolyimide prepared without APPS.  相似文献   

19.
Radical copolymerizations of 1-vinyl-2-pyrrolidone (VP) with vinylphosphonic acid (VPA) at different feed ratios were investigated. The copolymers were characterized by 1H-NMR, 13C-NMR and FT-IR. The copolymer composition was determined from the elemental analysis. Thermogravimetric analysis (TG) illustrates that the copolymers are stable up to 200 °C. Temperature dependence of the alternating current (AC) conductivities were investigated by means of impedance spectroscopy. The direct current (DC) conductivities of the samples are derived from the AC conductivity data.  相似文献   

20.
Calcium containing poly(urethane-ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate or toluylene 2,4-diisocyanate (HMDI or TDI) with a mixture of calcium salt of mono(hydroxybutyl)phthalate [Ca(HBP)2] and polyethylene glycol (PEG200 or PEG400). A series of calcium containing PUEs having different composition were synthesized by taking the mole ratio of Ca(HBP)2:PEG200 or PEG400:diisocyanate (HMDI or TDI) as 3:1:4, 2:2:4 and 1:3:4 to study the effect of calcium content on the properties of the copolymer. The structure of the polymers were confirmed by IR, 1H-NMR, 13C-NMR, and solid state 13C-CP-MAS NMR. The polymers were soluble in dimethyl sulfoxide and dimethyl formamide. The initial decomposition temperature of the polymers decreases with increase in calcium content. The Tg value of PUEs increases with increase in calcium content and decreases with increase in soft segment content and length. A single Tg value is observed for the calcium containing PUEs based on PEG200 shows the presence of homogeneous phase. However, two Tg values for the PUEs based on PEG400 for various composition of Ca(HBP)2, PEG400 and diisocyanate (HMDI or TDI) shows the presence of heterogeneous phase. The viscosity of the calcium containing PUEs increases with increase in the soft segment content as well as its length and decreases with increase in calcium content. X-ray diffraction patterns of the polymers show that the HMDI based polymers are partially crystalline and TDI based polymers are amorphous in nature. The dynamic mechanical analysis of the calcium containing PUEs based on HMDI shows that at any given temperature modulus (g and g) increases with increase in the ionic content in the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号