首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between poly(ethylene terephthalate) and four vinyl monomers, methacrylic acid, methyl methacrylate, styrene, and vinyl acetate, has been studied using hydrogen peroxide, benzoyl peroxide, azobisisobutyronitrile, and cobalt acetylacetonate as initiators. The ease of addition of the monomer to the polymer follows the solubility of the monomer in the polymer film. No chemical interaction occurs between the PET film and the monomer; rather, the monomer is homopolymerized within the film and forms a semi-interpenetrating network so that the two homopolymers cannot be separated unless the PET matrix is destroyed. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The graft copolymerization of itaconic acid-methacrylamide (IA-MAAm) comonomers was carried out using benzoyl peroxide as initiator onto poly(ethylene terephthalate) (PET) fibers in an aqueous medium. The grafted fibers were characterized by FTIR, TGA, DSC and SEM analysis. Effect of various parameters on graft yield such as feed composition, feed and initiator concentration, reaction time and temperature were investigated. The graft yield in the presence of MAAm increased because of the synergistic effect of MAAm comonomer. While, the graft yield alone with the IA onto PET fiber was 2.2%, the use of MAAm as a comonomer increased the amount of IA introduced to the PET fiber up to 13.7%. The reactivity ratios for both monomers were determined by using a Fineman-Ross plot. The grafting rate and saturation graft yield was increased upon increasing the temperature between 65 °C and 85 °C. When the temperature increased further than 85 °C, the saturation graft yield decreased. The graft yield has shown an increase up to an initiator concentration of 1.0 × 10−2 M and slightly decreased. The grafting increased the dyeability with acidic and basic dyes, and moisture absorption capacity but decreased the thermal stability of the fibers.  相似文献   

3.
To improve the low water wettability of poly(ethylene terephthalate) (PET), graft polymerization of acrylamide (AAm) by UV irradiation was performed onto the surface of a PET film with the simultaneous irradiation method without using a photo sensitizer. The PET film immersed in a 10 wt % deaerated aqueous solution of AAm was found to become highly hydrophilic upon UV irradiation. Optical microscopy on cross sections of grafted films showed that localization of the graft polymerization was restricted to a thin surface region of the film. Both the low concentration of polymer radicals formed by UV irradiation and the monomer penetration limited to the film surface would be responsible for localization of the grafted layer to the film surface region. Pretreatment of the PET film with benzyl alcohol was effective for enhancement of the graft polymerization. Retention of high hydrophilicity of the surface even after rigorous extraction of homopolymer and a comparative study of polymerization without UV irradiation strongly suggested that UV irradiation of the PET film under immersion in the deaerated AAm aqueous solution would lead to formation of the true graft copolymer.  相似文献   

4.
After one atmospheric pressure plasma treatment of poly(ethylene terephthalate) (PET) film, acrylic acid (AAc) in aqueous solution was successfully graft‐copolymerized onto PET films. The effects of reaction time, AAc monomer concentration and reaction temperature on grafting behavior of AAc were systematically studied. Possible reaction kinetics of plasma‐induced graft copolymerization, starting from initial hydroperoxide decomposition, were proposed. Through the Arrhenius analysis about graft copolymerization kinetics of AAc monomers on PET surface, it was revealed that the activation energies of decomposition, propagation and termination were 98.4, 63.5, and 17.5 kJ/mol, respectively. The temperature around 80 °C was favorable not only for the formation of oxide radicals through the thermal decomposition of hydroperoxide on PET surface but also for the extension of graft copolymer chain through direct polymer grafting. Poly(acrylic acid) (PAAc) grains grafted onto PET surfaces possessed relatively uniform size and both PAAc grain size and surface roughness increased with increasing the grafting degree of AAc. The increase of grain size with increasing grafting degree results from the possibility of forming long chain graft copolymers and their shielding of reactive sites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1594–1601, 2008  相似文献   

5.
Abstract

The graft copolymerization of methyl methacrylate onto poly(ethylene terephthalate) fibers has been studied using benzoyl peroxide as initiator. The grafting reactions were carried out within the 70 to 90°C temperature range, and the variations of graft yield with monomer and initiator concentrations were also investigated. The overall activation energy for grafting was calculated as 34.1 kcal/mol. The results of dyeability with the disperse dye suggested that diffusion into the fiber structure was moderately difficult when the graft yield reached 14?15%. The maximum graft yield was obtained at a benzoyl peroxide concentration of 4.00 × 10?3 M. The decomposition temperature values obtained from thermogravimetric analysis show that the thermal stability of poly(ethylene terephthalate) fibers decreased as a result of grafting. Further, such change in the properties of methyl methacrylate grafted fibers as density, diameter, and moisture regain were also determined.  相似文献   

6.
Abstract

In this study, graft polymerization of 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) on poly(ethylene terephthalate) (PET) films using cerium ammonium nitrate (CeAN) as an initiator was investigated. Before the polymerization reaction was carried out, films were swelled in dimethyl sulfoxide (DMSO) at 140°C for 1 h. The effect of polymerization temperature, time, initiator, and monomer concentrations on the graft yield were investigated. It was observed that the graft yield was initially increased with increasing temperature, monomer, and initiator concentrations; and then decreased. Graft yield was found to increase with increasing polymerization time up to 5 h, then remain constant. The effects of monomer and initiator inclusions on the grafting yield were also examined. Optimum conditions for grafting were found to be [AMPS] = 1.0 M, [Ce4+] = 1.5 × 10?2 M, T = 85°C and t = 5 h. The rate of grafting was found to be proportional to the 0.1 and 0.4 powers of monomer and initiator concentrations, respectively. The overall activation energy for the grafting was calculated to be 11.4 kcal mol?1. The effect of grafting on PET film properties such as intrinsic viscosity and water absorption capacity were determined. The grafted PET films were characterized with FTIR spectroscopy and scanning electron microscopy (SEM).  相似文献   

7.
A conductive polyaniline/poly(ethylene terephthalate) (PANI/PET) composite film was fabricated via the oxidative graft copolymerization of aniline (ANI) onto the plasma-induced poly(acrylic acid) (PAAc) grafted PET surface. The attenuated total reflectance Fourier transform infrared spectroscopy spectra (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) results confirmed that PANI was successfully grafted onto the surface of the PAAc-g-PET films. The effects of the experimental conditions on the percentage of PANI grafted onto the PAAc-g-PET films were extensively investigated. A very high grafting percentage of ANI can be obtained through the acid-base reaction between the aniline monomer and PAAc on the PAAc-g-PET surface at high temperature. As a result, the grafting percentage of PANI can be increased to as high as 12.18 wt %, which causes the surface resistance of the PANI-g-PAAc-g-PET film to be reduced to about 1000 Omega/sq. We predicted that this is because of the high flexibility of the PAAc molecular chains and high solubility of aniline, both of which facilitate the binding of aniline to PAAc during this high temperature acid-base reaction. It was observed by atomic force microscopy (AFM) that the PANI-modified PET surface exhibits higher size irregularity and surface roughness, which further indicated that a much greater number of aniline molecules can be reactively bonded to and distributed along the grafted AAc chains and that the PANI-g-PAAc-g-PET surface resulting from the sequential oxidative graft copolymerization can possess higher electrical conductivity.  相似文献   

8.
Poly(methyl acrylate) has been grafted onto wool by using ceric ion as redox initiator in an aqueous medium. Initiation by ceric ammonium nitrate (CAN) was carried out in the presence of nitric acid of varying concentration at 35, 45, and 50°C for a period of 1.5 or 3 hr. Percent grafting was found to be dependent on concentrations of acid and monomer, reaction time, and temperature. Above 45°C, a considerable amount of homopolymer was formed; at 35°C, very little grafting of poly(methyl acrylate) was observed. Nitric acid catalyzed the reaction and a concentration of 0.17–0.19M HNO3 was found suitable.  相似文献   

9.
The melt free radical grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE) was carried out in Brabender internal mixer. The GMA content of the grafted HDPE (HDPE‐g‐GMA) was determined through FTIR by means of a calibration curve. The influence of reaction procedure, radical initiator concentration and addition of a co‐monomer (styrene) on the grafting efficiency was examined. Blends of poly(ethylene terephthalate) (PET) with HDPE and HDPE‐g‐GMA (75/25 w/w) were prepared by melt mixing in internal mixer. The morphology of the blends was then analysed by SEM microscopy. PET/HDPE‐g‐GMA blends displayed improved phase dispersion and interfacial adhesion as compared to unfanctionalized PET/HDPE blend.  相似文献   

10.
Thymol, an antibacterial agent was used for the preparation of a methacrylic monomer. The conventional and atom transfer radical (ATRP) polymerizations of this monomer were studied using different conditions. Then, the functionalization of poly(ethylene terephthalate) (PET) films by “grafting from” ATRP using this monomer was investigated. In this aim, a three steps procedure was developed. The surfaces were first treated by NH3 plasma treatment to incorporate primary amino functions. Then, in a second step, ATRP initiator was grafted by reaction with bromoisobutyryl bromide. Surface initiated ATRP of thymyl methacrylate was performed in solution in the presence of a sacrificial initiator. The efficiency of these reactions was confirmed by X‐ray photoelectron spectroscopy. Wetting properties and surface energy were found to vary systematically depending to the type of functionalization and grafting. The poly(thymyl methacrylate)‐grafted PET surfaces exhibit resistance to bacterial adhesion toward Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus strains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1975–1985  相似文献   

11.
Abstract

In this study the graft copolymerization of acrylamide (AAm) on swollen poly(ethylene terephthalate) (PET) fibers using cerium ammonium nitrate (CeAN) initiator was investigated. Five organic solvents, dimethylsulfoxide (DMSO), morpholine, acetic acid (HAc), n-butanol, and 1,2-dichloroethane (DCE), were used as swelling agents. DMSO was found to be the most suitable swelling agent. Solvent diffusion into the fibers was observed to increase with treatment time and temperature. The optimum graft yield was obtained when fibers were grafted after having been swollen in DMSO for a period of 1 hour at 140°C. Variation of graft yield with polymerization time and temperature, and monomer, initiator, and acid concentrations were investigated. Graft yields were observed to increase initially with polymerization time, then to level off, and were found to increase up to a certain monomer and Ce4+ concentration, then to decrease slightly. The effect of grafting on such fiber properties as diameter, viscosity, and moisture gain were also investigated.  相似文献   

12.
Glow-discharge-initiated polymerization of acrylic acid incorporated in poly(ethylene terephthalate) (PET) films was investigated. An increase in polymerization yield with plasma treatment duration and power was found. Polymerization was not confined to the film surface. At high power and long treatment time, polymerization in the bulk of the PET also took place. Water regain and contact angle of the PET-treated films were affected by the presence of poly(acrylic acid) (PAA). The carboxyl groups of the PAA chains incorporated in the PET matrix were utilized for further chemical modification of the PET film. Poly(ethylene glycol) (PEG) was grafted onto PAA by esterification. DSC studies showed the presence of both PAA and PEG in the PET matrix and shed light on the morphology of the multicomponent polymeric system. Free isocyanate groups were introduced into the PET matrix by reacting PAA carboxyl groups with hexamethylene diisocyanate.  相似文献   

13.
Grafting of polystyrene (PS) onto wool has been carried out in aqueous medium by use of benzoyl peroxide (BPO) as initiator in the presence of an acetic acid–pyridine mixture which acted as a pH modifier. Percent grafting was found to be dependent on concentration of acetic acid and pyridine, concentration of monomer, concentration of BPO, and reaction temperature. The role of pH modifier upon BPO-initiated grafting is established by the observation that no grafting occurred when one of the components of the pH modifier was absent.  相似文献   

14.
The degree of linkage, θ, defined as the ratio of the binding groups to the total of potentially interacting groups and the stability constant K of the polymer–polymer complexes in the systems poly(methacrylic acid)–poly(ethylene glycol), poly(acrylic acid)–poly(ethylene glycol), and poly-(methacrylic acid)–poly(vinyl pyrrolidone) in aqueous and aqueous alcohol media were determined as a function of temperature by potentiometric titration. It was found that θ and K are strongly dependent on chain length, temperature, and medium and that hydrophobic interaction is a significant factor in the stabilization of the complexes. The enthalpy and entropy changes and the cooperativeness parameter of the systems were calculated. A mechanism for the complexation in terms of cooperative interaction was proposed.  相似文献   

15.
The graft copolymerization of acrylic acid onto acrylonitrile-butadiene-styrene terpolymer (ABS), has been initiated by the use of both benzoyl peroxide and azobisisobutyronitrile. Addition occurs in the butadiene region of the polymer, either by the loss of a vinylic hydrogen and subsequent radical formation and addition of monomer or by addition to the double bond. The amount of acrylic acid which may be added is dependent upon the time and temperature of the reaction and the concentration of monomer and initiator. Thermal analysis of the grafted samples show that the residue is less than that expected based upon the composition of the copolymer; similar results have been previously obtained for acrylic acid grafted by another technique. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The results of a structural study of conducting polymer coatings deposited onto poly(ethylene terephthalate) (PET) track membranes by template synthesis are reported. The following aspects of the quality of polymer coatings were studied: the ratio between film and granular polymers, the polymer distribution over the surface of track membranes, and the thickness of polymer layers on the opposite sides of track membranes. The fraction of granular polypyrrole (PPy) on the surface and in the pores of a film increased with pore diameter. A decrease in the polymerization temperature decreased the amount of granular PPy on the surface of membranes, whereas the effect of granular PPy on the water permeability of track membranes remained unchanged. A more homogeneous distribution of PPy over the surface of track membranes can be obtained by density equalization of reacting solutions; however, the fraction of granular PPy on the membrane surface increased in this case. It was found that polymer coatings on the two sides of the surface of a membrane template had different thicknesses. Poly(N-methylpyrrole) completely covered only one side of a track membrane facing a monomer solution.  相似文献   

17.
Graft copolymerization of methacrylic acid (MAA) or acrylamide (AM) from an aqueous solution onto acrylonitrile-butadiene-styrene terpolymer (ABS) was initiated by the thermal decomposition of polymeric hydroperoxides, which are formed upon UV irradiationof ABS, which contains anthracene. Diffusion of anthracene at room temperature from a methanolic solution into ABS was affected by the acrylonitrile content ofABS.The graft yield was independent on the concentration of anthracene in the wide range of 0.03 X 10-3 to 14.29 X 10?3 mol/L in ABS. The graft polymerization reaction does not occur below 100°C.The effect of other variables, such as time of irradiation, intensity of UV, reaction time, and concentration of monomer in aqueous solution, on the amount of monomer grafted to ABS were also investigated.The contact angle significantly decreases upon grafting, indicating that the graft layer is on the surface of the polymer. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Abstract

Graft polymerization of acrylamide (AAm) on 1, 1, 2, 2 tetrachloro-ethane (TCE) preswelled poly(ethylene terephthalate) (PET) films were performed with chemical initiation method using asobisiso-butyronitrile (AIBN) initiator. Temperature was found to have a greater effect on the swelling then the swelling time. Variation of the graft yield with polymerization temperature, time, AIBN concentration, AAm concentration, AIBN and AAm inclusion times were investigated. The optimum temperature for grafting was found to be 70°CC. The graft yield was observed to increase with polymerization time, AAm concentration, initiator and monomer diffusion time up to a saturation graft yield and then leveled off. An increase in AIBN concentration first enhanced the percent grafting then showed a decrease. The addition of some salts (Ni2+, Cr3+, Co2+, Cu2+) on the rate of grafting was also investigated. From the temperature dependence of the initial rate of grafting, the overall activation energy was found to be 4. 1 kcal/mol and relevant rate equation have been derived. The effect of grafting on film propities, such as water absorption capacity, intrinsic viscosity were determined. Grafted films were characterized by FTIR spectros-copy and scanning electron microscopy (SEM).  相似文献   

19.
Poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone) triblock copolymers (PECL) covering a wide range of poly(ethylene glycol) (PEG) lengths were synthesized with alkali metal alkoxide derivatives of poly(ethylene glycol). The effects of various factors, such as amount of the initiator, reaction time and temperature, polarity of solvent, length of PEG segment, and counterion on the polymerization were investigated. The copolymers were characterized by 1H-NMR, IR, GPC, and DSC. It was found that THF system is superior to toluene system. The conversion of the monomer increased with increase of the initiator concentration. High molecular weight of the copolymer and high conversion of the monomer was obtained at below 30°C within 5 min. The polymerization process was studied by GPC and the coexistence of propagation and transesterification reaction was found, which leaded to relatively broad molecular weight distribution of the copolymers. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
Grafting of poly(methyl methacrylate) onto starch has been investigated in aqueous medium by using AIBN as radical initiator. Starch-g-PMMA has been characterized by determination of starch in the graft copolymer. Percentage of grafting has been determined as functions of concentration of monomer, concentration of initiator, reaction time, and temperature. From scanning electron microscopic studies, evidence for grafting of PMMA onto starch has been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号