首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total interval number of an n-vertex graph with maximum degree Δ is at most (Δ + 1/Δ)n/2, with equality if and only if every component of the graph is KΔ,Δ. If the graph is also required to be connected, then the maximum is Δn/2 + 1 when Δ is even, but when Δ is odd it exceeds [Δ + 1/(2.5Δ + 7.7)]n/2 for infinitely many n. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 79–84, 1997  相似文献   

2.
In a triangle-free graph, the neighbourhood of every vertex is an independent set. We investigate the class S of triangle-free graphs where the neighbourhoods of vertices are maximum independent sets. Such a graph G must be regular of degree d=α(G) and the fractional chromatic number must satisfy χf(G)=|G|/α(G). We indicate that S is a rich family of graphs by determining the rational numbers c for which there is a graph GS with χf(G)=c except for a small gap, where we cannot prove the full statement. The statements for c≥3 are obtained by using, modifying, and re-analysing constructions of Sidorenko, Mycielski, and Bauer, van den Heuvel and Schmeichel, while the case c<3 is settled by a recent result of Brandt and Thomassé. We will also investigate the relation between other parameters of certain graphs in S like chromatic number and toughness.  相似文献   

3.
4.
《Journal of Graph Theory》2018,88(1):131-145
For a sequence d of nonnegative integers, let and be the sets of all graphs and forests with degree sequence d, respectively. Let , , , and where is the domination number and is the independence number of a graph G. Adapting results of Havel and Hakimi, Rao showed in 1979 that can be determined in polynomial time. We establish the existence of realizations with , and with and that have strong structural properties. This leads to an efficient algorithm to determine for every given degree sequence d with bounded entries as well as closed formulas for and .  相似文献   

5.
In this paper, we show the equivalence of somequasi-random properties for sparse graphs, that is, graphsG with edge densityp=|E(G)|/( 2 n )=o(1), whereo(1)→0 asn=|V(G)|→∞. Our main result (Theorem 16) is the following embedding result. For a graphJ, writeN J(x) for the neighborhood of the vertexx inJ, and letδ(J) andΔ(J) be the minimum and the maximum degree inJ. LetH be atriangle-free graph and setd H=max{δ(J):JH}. Moreover, putD H=min{2d H,Δ(H)}. LetC>1 be a fixed constant and supposep=p(n)≫n −1 D H. We show that ifG is such that
(i)  deg G (x)≤C pn for allxV(G),
(ii)  for all 2≤rD H and for all distinct verticesx 1, ...,x rV(G),
,
(iii)  for all but at mosto(n 2) pairs {x 1,x 2} ⊆V(G),
, then the number of labeled copies ofH inG is
.
Moreover, we discuss a setting under which an arbitrary graphH (not necessarily triangle-free) can be embedded inG. We also present an embedding result for directed graphs. Research supported by a CNPq/NSF cooperative grant. Partially supported by MCT/CNPq through ProNEx Programme (Proc. CNPq 664107/1997-4) and by CNPq (Proc. 300334/93-1 and 468516/2000-0). Partially supported by NSF Grant 0071261. Supported by NSF grant CCR-9820931.  相似文献   

6.
For graphs G and F, write if any coloring of the edges of G with colors yields a monochromatic copy of the graph F. Suppose is obtained from a graph S with s vertices and maximum degree d by subdividing its edges h times (that is, by replacing the edges of S by paths of length h + 1). We prove that there exists a graph G with no more than edges for which holds, provided that . We also extend this result to the case in which Q is a graph with maximum degree d on q vertices with the property that every pair of vertices of degree greater than 2 are distance at least h + 1 apart. This complements work of Pak regarding the size Ramsey number of “long subdivisions” of bounded degree graphs.  相似文献   

7.
In 1983, Chvátal, Trotter and the two senior authors proved that for any Δ there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph KN with N?Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Δ. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and edges, with N=⌈Bn⌉ for some constant B that depends only on Δ. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Δ is . Our approach is based on random graphs; in fact, we show that the classical Erd?s–Rényi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Δ.The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed.  相似文献   

8.
We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal kN for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree Δ where the backbone graph is a d-degenerated subgraph of G, the backbone chromatic number is at most Δ+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most Δ+1. We also present examples where these bounds are attained.Finally, the asymptotic behavior of the backbone chromatic number is studied regarding the degrees of G and H. We prove for any sparse graph G that if the maximum degree of a backbone graph is small compared to the maximum degree of G, then the backbone chromatic number is at most .  相似文献   

9.
10.
A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.  相似文献   

11.
12.
13.
Xuding Zhu 《Discrete Mathematics》2009,309(18):5562-5568
Given a graph G and a positive integer p, χp(G) is the minimum number of colours needed to colour the vertices of G so that for any ip, any subgraph H of G of tree-depth i gets at least i colours. This paper proves an upper bound for χp(G) in terms of the k-colouring number of G for k=2p−2. Conversely, for each integer k, we also prove an upper bound for in terms of χk+2(G). As a consequence, for a class K of graphs, the following two statements are equivalent:
(a)
For every positive integer p, χp(G) is bounded by a constant for all GK.
(b)
For every positive integer k, is bounded by a constant for all GK.
It was proved by Nešet?il and Ossona de Mendez that (a) is equivalent to the following:
(c)
For every positive integer q, q(G) (the greatest reduced average density of G with rank q) is bounded by a constant for all GK.
Therefore (b) and (c) are also equivalent. We shall give a direct proof of this equivalence, by introducing q−(1/2)(G) and by showing that there is a function Fk such that . This gives an alternate proof of the equivalence of (a) and (c).  相似文献   

14.
Let ex * (D; H) denote the maximum number of edges in a connected graph with maximum degree D and no induced subgraph isomorphic to H. We prove that this is finite only when H is a disjoint union of paths,m in which case we provide crude upper and lower bounds. When H is the four-vertex path P4, we prove that the complete bipartite graph KD,D is the unique extremal graph. Furthermore, if G is a connected P4-free graph with maximum degree D and clique number ω, then G has at most D2 ? D(ω ? 2)/2 edges. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
We consider a path as an ordered sequence of distinct vertices with a head and a tail. Given a path, a transfer-move is to remove the tail and add a vertex at the head. A graph is n-transferable if any path with length n can be transformed into any other such path by a sequence of transfer-moves. We show that, unless it is complete or a cycle, a connected graph is δ-transferable, where δ≥2 is the minimum degree.  相似文献   

16.
Ohba has conjectured that if G is a k-chromatic graph with at most 2k+1 vertices, then the list chromatic number or choosability of G is equal to its chromatic number χ(G), which is k. It is known that this holds if G has independence number at most three. It is proved here that it holds if G has independence number at most five. In particular, and equivalently, it holds if G is a complete k-partite graph and each part has at most five vertices.  相似文献   

17.
18.
A weakening of Hadwiger’s conjecture states that every n-vertex graph with independence number α has a clique minor of size at least . Extending ideas of Fox (2010) [6], we prove that such a graph has a clique minor with at least vertices where c>1/19.2.  相似文献   

19.
Steinberg and Tovey proved that every -vertex planar triangle-free graph has an independent set of size at least , and described an infinite class of tight examples. We show that all -vertex planar triangle-free graphs except for this one infinite class have independent sets of size at least .  相似文献   

20.
The Multicut problem can be defined as: given a graph G and a collection of pairs of distinct vertices {si,ti} of G, find a minimum set of edges of G whose removal disconnects each si from the corresponding ti. Multicut is known to be NP-hard and Max SNP-hard even when the input graph is restricted to being a tree. The main result of the paper is a polynomial-time approximation scheme (PTAS) for Multicut in unweighted graphs with bounded degree and bounded tree-width. That is, for any ε>0, we present a polynomial-time (1+ε)-approximation algorithm. In the particular case when the input is a bounded-degree tree, we have a linear-time implementation of the algorithm. We also provide some hardness results: we prove that Multicut is still NP-hard for binary trees and that it is Max SNP-hard if we drop any of the three conditions (unweighted, bounded-degree, bounded tree-width). Finally we show that some of these results extend to the vertex version of Multicut and to a directed version of Multicut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号