首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The reaction of hexachlorocyclotriphosphazene (N3P3Cl6) with sodium p-cresoxide proceeds by a predominantly nongeminal pathway. The presence of geminal isomers at the bis- and tris-stages of substitution in tiny quantities (< 5%) has also been observed. All the chloro(p-cresoxy)cyclotriphosphazenes and their dimethylamino derivatives have been characterized by 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy. The reaction of N3P3Cl6 with sodium phenoxide has been reinvestigated. The relative yields of the products at various stages of substitution and their isomeric compositions are almost the same for both phenoxy and p-cresoxy systems. Possible mechanisms to explain the observed isomeric compositions are discussed. A “through-space” interaction involving oxygen-2p and phosphorus-3d orbitals is invoked to explain the greater yield of the cis isomer of N3P3Cl4(OAr)2 than that of its trans isomer.  相似文献   

2.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

3.
The triphenylsiloxy-substituted cyclotriphosphazenes, N3P3Cl5OSiPh3, gem-N3P3Cl4(OSiPh3)2, N3P3(OSiPh3)6, and N3P3(OPh)5OSiPh3, have been prepared. The synthesis of gem-N3P3Cl4(OSiPh3)2 involves the reaction of (NPCl2)3 with Ph3SiONa to form the intermediates gem-N3P3Cl4(OSiPh3)2(ONa) and gem-N3P3Cl4(ONa)2, which yield gem-N3P3Cl4(OSiPh3)2 when treated with Ph3SiCl. The compounds N3P3Cl5OSiPh3 and N3P3(OSiPh3)0 are formed by the condensation reactions of N3P3Cl5OBun and N3P3(OBun)6, respectively, with Ph3SiCl. The compound N3P3(OPh)5OSiPh3 is synthesized by the reaction between N3P3(OPh)5Cl and Et3SiONa to first give the intermediate N3P3(OPh)5ONa, which yields N3P3(OPh)5OSiPh3 when reacted with Ph3SiCl. The structural characterization and properties of these compounds are discussed. The crystal and molecular structure of gem-N3P3Cl4(OSiPh3)2 has been investigated by single-crystal X-ray diffraction techniques. The crystals are monoclinic with the space group P21/c with a = 16.850(8), b = 12.829(4), c = 18.505(15) Å, and β = 101.00(6)° with V = 3927 Å3 and Z = 4. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Abstract

Mono-(N3P3Cl4Y2), bis-(N3P3Cl2Y4) and tris-spiro derivatives (N3P3Y6) have been prepared with ethylene, 1, 3-propylene and 1,4-butylene glycols (Y2 = glycol residue). The 1H NMR spectra of mono- and tris-derivatives are relatively simple; those of the bis- very complex due to the intrinsic asymmetry of the methylene protons. This effect is made use of in studying the replacement pattern of N3P3Cl4 [O (CH2)3O] with primary and secondary amines. Homonuclear 1H decoupling simplifies the spectra and allows an unambiguous distinction to be made between the different isomeric possibilities of the bis amino derivatives N3P3Cl2R2 [O(CH2)3O] where R = amino residue. Primary amines give geminal, secondary amines nongeminal trans-derivatives. The trans-structure of the bis-pyrrolidino derivative has been confirmed by X-ray crystallography.  相似文献   

5.
Abstract

The reactions of hexachlorocyclotriphosphazene, N3P3Cl6 (1) with 1,1,3,3-tetramethyl-guanidine (2) in (1:1:2, 1:2:4 and 1:3:6) stoichiometries in THF and dichloromethane solutions under reflux yield a total of 4 novel products: three non-geminal derivatives, N3P3Cl4[NCN2(CH3)4]2 (3), N3P3Cl3[NCN2(CH3)4]3 (4) and N3P3Cl2[NCN2(CH3)4]4 (5); and one hexa-substituted product, N3P3[NCN2(CH3)4]6 (6). The structures of 3-6 have been determined mainly by elemental analysis, MS, 31P and 1H NMR spectral data. Furthermore, thermal characteristics of the synthesized compounds 4 and 6 were evaluated using Differential Scanning Calorimetric (DSC) measurements. NMR spectroscopic data, product types and relative yields are compared with those of the previously investigated derivatives of N3P3Cl6 (1) with mono and difunctional reagents.  相似文献   

6.
Reaction of hexachlorocyclotriphosphazene, N3P3Cl6 (1), with the sodium derivative of the fluorinated diol, 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol, (2), in THF solution at room temperature afforded five products, whose structures have been characterised by 1H, 19F and 31P NMR spectroscopy: the mono-ansa compound N3P3Cl4[OCH2(CF2)4CH2O] (3); the single-bridged compound N3P3Cl5[OCH2(CF2)4CH2O]N3P3Cl5 (4), two double-bridged compounds N3P3Cl4(OCH2(CF2)4CH2O)2N3P3Cl4, (5-anti, 5-syn) and the triple-bridged compound N3P3Cl3(OCH2(CF2)4CH2O)3N3P3Cl3 (6). X-ray crystallographic studies confirmed the structures of the ansa compound (3), the double-bridged compound (5-anti) and the first example of a triple-bridged cyclotriphosphazene derivative (6). The results were also compared with those for reactions of (1) with analogous fluorinated shorter diols (1,4-butane- and 1,5-pentane-diols). It is found that on increasing the chain length of the diol, there is a decrease in the relative proportion of intramolecular reactions giving spiro and ansa derivatives and an increase in the amount of bridged cyclophosphazene derivatives via intermolecular reactions.  相似文献   

7.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

8.
In CH3CN solution at −30 °C, [TAS]+[P3N3F5NS(O)F] (2) is formed from TASF and P3N3F5NSO, the compound readily decomposes to give P3N3F6 and [TAS]+[NSO]. [TAS]+[P3N3F5NS(O)Cl] (3) and [TAS+]2 [{P4N4F6(NS(Cl)N)}2]2− (5) were prepared from TASCl and P3N3F5NSO and 1,5-P4N4F6(NSO)2, respectively, and characterised by X-ray crystallography.  相似文献   

9.
The reaction of N3P3F6 ( 2 ) with NaOPh led to the phenoxyfluorocyclotriphosphazenes N3P3(OPh)nF6‐n (n = 1( 3 ), 2( 4 ), 3( 5 )). Structures were assigned using 31P decoupled 19F NMR spectroscopy. The reaction followed a non‐geminal pathway with a 50.7:49.3 cis:trans ratio for 4 and a 28.6:71.4 cis:trans ratio for 5 . Comparisons to the analogous reaction of N3P3Cl6 ( 1 ) were facilitated by DFT calculations on N3P3(OPh)X5 (X = F, Cl) which show that the NBO charges on the phenyl group are invariant with respect to the identity of the phosphazene. These observations have been correlated to mechanistic models for cyclophosphazene substitution reactions.  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 245, LiP7(BNEt2)2 and P7(BNEt2)4Cl: Two Novel Polycyclic Boraphosphanes The directed synthesis of a noval tetracyclic heteropolyphosphane skeleton from a tricyclophosphane has been achieved by condensation of Li3P7 · 3DME with Cl(Et2N)B‐B(NEt2)Cl to the diboranonaphosphanide LiP7(BNEt2)2 ( 1 ). When the reaction proceeds the mixed‐substituted diboranonaphosphane P7(BNEt2)4Cl ( 2 ) is formed. According to their 31P NMR spectra 1 and 2 possess a B2P7(3) skeleton analogous to that of the hydrocarbon deltacyclane. Additional weak signals in the 31P NMR spectrum of 2 indicate that also small amounts of the symmetrically substituted diborane(4) P14B6(NEt2)6 ( 3 ) are formed.  相似文献   

11.
Abstract

Selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives were synthesized via substitution reactions through tailored control. The reactions of cyclotriphosphazene with 4-oxybenzaldehyde and 2,2-dioxybiphenyl gave the following synthesized derivatives: one mono-substituted open-chain compound, N3P3Cl5(O2C7H5) (1, 69%); mono spiro, N3P3Cl4(O2C12H8) (2, 91.1%); non-gem tri-substituted, N3P3Cl3 (O6C21H15) (3, 17%); dispiro, N3P3Cl2(O4C24H16) (4, 92.3%); penta-substituted, N3P3Cl(O10C35H25) (5, 92%);hexa-substituted, N3P3(O12C42H30). Most of these derivatives (1–6) are obtained with good yield (up to 97%), This work provides a simple and available approach to obtain versatile cyclotriphosphazene derivatives, which is expected to further promote the use of HCCP as phosphorus platform for the construction of multi-functional materials.  相似文献   

12.
Trimethylsilyldiethylamine Me3SiNEt2 and MoOCl4 (1:1) undergo a free radical redox reaction in CH2Cl2 or Et2O to form MoCl3O(HNEt2). Reduction occurs even in aprotic media like CCl4 and CS2 to give MoV complexes Mo2Cl6O2(N2Et4) and Mo2Cl6O2[(SCNEt2)2S2], respectively. A 2:1 reaction in nonionizing protic solvents undergoes redox cum cleavage to provide MoCl2O(NEt2) (HNEt2) but a reaction at reflux temperature in 1,2-dichloroethane leads to diethylammonium salt, [Et2NH2][MoCl4O(HNEt2)]. Higher molar reactions (3:1, 4:1) in CH2Cl2 or Et2O are associated with redox reaction as well as oxygen atom abstraction to form de-oxo MoIV complex MoCl3(NEt2)(HNEt2)2, whereas, a 3:1 reaction in CS2 forms Mo2Cl4O(S2CNEt2)4. Compounds have been characterized by elemental analyses, redox titration, magnetic moment, conductance, infrared, electronic absorption and 1H-NMR measurements.  相似文献   

13.
Eight ionic organotin compounds [R2SnCl2(2-quin)](HNEt3)+ have been synthesized by reactions of 2-quinH with R2SnCl2 (R = PhCH21, 2-Cl-C6H4CH22, 4-Cl-C6H4CH23, 2-F-C6H4CH24, 4-F-C6H4CH25, 4-CN-C6H4CH26, Ph 7, 2,4-Cl2-C6H3CH28) in the presence of organic base NEt3, and their structures have been characterized by elemental analysis, IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopies. The structure of [(2,4-Cl2-C6H3CH2)2SnCl2(2-quin)](NEt3)+ (8) has been determined by X-ray diffraction study. Studies show that compound 8 has a monomeric structure with the central tin atom six-coordinate in a distorted octahedral configuration and the nitrogen atoms of the 2-quin ligands are coordinating to the tin atom in all the eight compounds.  相似文献   

14.
Crystal Structure of Hexamine Cyclotriphosphazene, P3N3(NH2)6 In the presence of KNH2 hexamine cyclotriphosphazene semi ammoniate (molar ratio 12:1) in NH3 gives crystals of solvent free P3N3(NH2)6 within 5 d at 130°C and p(NH3) = 110 bar. The structure was solved by X-rax methods: P3N3(NH2)6: P21/c, Z = 4, a = 10.889(6) Å, b = 5.9531(6) Å, c = 13.744(8) Å, β = 97.83(3)°, Z(Fo) = 1 721 with (Fo)2 ≥ 3σ(Fo)2, Z(var.) = 157, R/Rw = 0,036/0,041 The structure contains columns of molecules P3N3(NH2)6 all in the same orientation. The six-membered rings within one molecule have boat conformation. The columns are stacked together in a way that one is surrounded by four others shifted by half a lattice constant in direction [010]. Strong hydrogen bridge-bonds N? H…?N connect molecules within the columns and between them.  相似文献   

15.
(PPh4)[(ReO2S2)CuI] and (NEt4)2[ReOS3)Cu3Cl4]: Fixation of the up to now not Isolated Ions [ReO2S2]? and [ReOS3]? Utilizing the Stability of the CuS2(Re) and Cu3S3(Re) Fragments (PPh4)[(ReO2S2)CuI] ( 1 ) and (NEt4)2[ReOS3)Cu3Cl4] ( 2 ) containing the up to now not isolated oxothioperrhenate ions [ReO2S2]? and [ReOS3]? as ligands, have been prepared by the reaction of (NEt4)[ReS4] with PPh3 and CuI in acetone in the presence of (PPh4)I (( 1 )) or with CuCl in CH2Cl2 in the presence of (NEt4)Cl (( 2 )), respectively. 1 and 2 have been characterized by X-ray structure analysis, elemental analysis and spectroscopic studies (IR, UV/Vis). The electronic spectra show bands which can approximately be assigned to interesting low-energy charge-transfer-transitions of the type d(Cu) → d(Re). For crystal data see Inhaltsübersicht.  相似文献   

16.
Chalcogenoniobates as Reagents for the Synthesis of New Heterobimetallic Niobium Coinage Metal Chalcogenide Clusters In the presence of phosphine chalcogenoniobates such as Li3[NbS4] · 4 CH3CN ( I ), (NEt4)4[Nb6S17] · 3 CH3CN ( II ) and (NEt4)2[NbE′3(EtBu)] ( III a : E′ = E = S; III b : E = Se, E′ = S; III c : E = E′ = Se) respectively react with copper and gold salts to give a number of new heterobimetallic niobium copper(gold) chalcogenide clusters. These clusters show metal chalcogenide units already known from the complex chemistry of the tetrachalcogenometalates [ME4]n (M = V, n = 3, E = S; M = Mo, W, n = 2, E = S, Se). The compounds 1 – 8 owe a central tetrahedral [NbE4] structural unit, which coordinates η2 from two to five coinage metal atoms, employing the chalcogenide atoms of the [NbE4] edges. The compounds 9 – 11 have a [M′2Nb2E4] (M′ = Cu, Au) heterocubane unit in common, involving a metal metal bond between the niobium atoms, while the compounds 12 and 13 show a complete and 14 an incomplete [M′3NbE3X] heterocubane structure (X = Cl, Br). 15 consists of a Cu6Nb2 cube with the six planes capped by μ4 bridging selenide ligands forming an octahedra. The compounds 1 – 15 are listed below: (NEt4) [Cu2NbSe2S2(dppe)2] · 2 DMF ( 1 ), [Cu3NbS4(PPh3)4] ( 2 ), [Au3NbSe4(PPh3)4] · Et2O ( 3 ), [Cu4NbS4Cl(PCy3)4] ( 4 ), [Cu4NbS4Cl(PtBu3)4] · 0,5 DMF ( 5 ), [Cu4NbSe4(NCS)(PtBu3)4] · DMF ( 6 ), [Cu4NbS4(NCS)(dppm)4] · Et2O ( 7 ), [Cu5NbSe4Cl2‐ (dppm)4] · 3 DMF ( 8 ), [Cu2Nb2S4Cl2(PMe3)6] · DMF ( 9 ), [Au2Nb2Se4Cl2(PMe3)6] · DMF ( 10 ), (NEt4)2[Cu3Nb2S4(NCS)5(dppm)2(dmf)] · 4 DMF ( 11 ), [Cu3NbS3Br(PPh3)3(dmf)3]Br · [CuBr(PPh3)3] · PPh3 · OPPh3 · 3 DMF ( 12 ), [Cu3NbS3Cl2(PPh3)3(dmf)2] · 1.5 DMF ( 13 ), (NEt4)[Cu3NbSe3Cl3(dmf)3] ( 14 ), [Cu6Nb2Se6O2(PMe3)6] ( 15 ). The structures of these compounds were obtained by X‐ray single crystal structure analysis.  相似文献   

17.
The mixed substituent cyclophosphazene monomers N3P3Cl4(OCH?CH2)(OCH2CF3) ( 2 ) and N3P3Cl3(OCH?CH2) (OCH2CF3)2 ( 3 ) undergo polymerization under radical initiation conditions to yield the mixed substituent poly[(vinyloxy)cyclotriphosphazenes] [CH2CH(ON3P3Cl4(OCH2CF3))]n( 5 ) and [CH2CH(ON3P3Cl3(OCH2CF3)2)]n ( 6 ), respectively. A significant, progressive reduction in molecular weight compared to the parent polymer of the series [CH2CH(ON3P3Cl5)]n ( 4 ) was observed and attributed to increased chain transfer. The thermal decomposition of 5 and 6 is similar to that observed for 4 with an exothermic elimination of HCl at modest temperatures. An alternative synthetic pathway involving nucleophilic substitution reactions of 4 provided [CH2CH(ON3P3(OCH2CF3)5)]n ( 7 ), [CH2CH(N3P3Cl2(OC6H5)3)]n ( 8A) , [CH2CH(ON3P3Cl1.7(OC6H5)3.3)]n ( 8B ), [CH2CH(ON3P3Cl1.5(NHCH3)3.5)]n ( 9 ), [CH2CH(ON3P3Cl3.8 (N(CH2CH3)2)1.2]n ( 10A ), [CH2CH(ON3P3Cl3.4(N(CH2CH3)2)1.6)]n ( 10B ), and [N3P3Cl2(OCHCH2)(N(CH3)2)]n, ( 11 ). The thermal behaviors of all of the new polymers were examined by TGA, DTA, DSC, and pyrolysis mass spectrometry. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

18.
The diiron ynamine complexes [Fe2(CO)7{μ-C(R)C(NEt2)}] (1) (R=Me, Ph, C3H5, SiMe3) react with theN-sulfinylaniline, PhNSO, in refluxing hexane to yield the complexes [Fe2(CO)6{μ-N(Ph)C(Me)S}] (2), [Fe2(CO)6{μ-N(Ph)C(NEt2)C(Ph)S}] · 0.5C6H12 (3), [Fe2(CO)6{μ-C(C3H5)C(NEt2)N(Ph)SO}] · 0.5CH2Cl2 (4), and [Fe2(CO)6{μ-C(SiMe3)C(NEt2)S)}] (5). Compound 5 was found to be identical to the previously reported product obtained from the reaction of 1 with sulfur. Compounds 2, 3, and 4 were characterized by single crystal X-ray diffraction analyses. Crystal data: for 2: space group = P21/n,a=9.533(1) Å,b=18.830(4) Å,c=12.705(4) Å, β=107.01(2)°,Z=4, 2687 reflections,R=0.027; for 3: space group=P21/n,a=13.660(2) Å,b=19.096(8) Å,c=10.972(2) Å, β=90.62(1)°,Z=4, 2821 reflections,R=0.036; for 4: space group=P21/a,a=18.098(5) Å,b=16.564(4) Å,c=18.548(2) Å, β=115.44(2)°,Z=4, 3569 reflections,R=0.041. Complexes 2 and 3 result from fragmentation of theN-sulfinylaniline ligand and insertion of the nitrene grouping into the Fe=C(aminocarbene) bond, whereas the sulfur atom inserts into one Fe-C bond of the bridging carbene. Compound 4 is formed by insertion of the entireN-sulfinyl aniline ligand into the Fe=C(aminocarbene) bond. All three complexes have basket-like arachno structure isolobal to the benzvalene one.  相似文献   

19.
The reaction of hexachlorocyclotriphosphazatriene (1) with p-aminophenol (2) produced two new products: the open chain compound N3P3Cl5(NHC6H4OH) (3), and the bridged compound N3P3Cl5(NHC6H4O)N3P3Cl5(4). The compounds 3 and 4 were separated and characterized by elemental analysis, massspectrometry and NMR spectroscopy. The molecular structures of compounds 3 and 4 were determined by X-ray crystallography. Compound 3 is the first example of cyclotriphosphazene including (p-hydroxyphenyl) amino group and compound 4 was the first example of the N-substituted p-aminophenoxy group with cyclotriphosphazene.  相似文献   

20.
(NEt4)2[Re(CO)3Br3] or (NEt4)2[Tc(CO)3Cl3] react with bis(2-pyridyl)phenylphosphine (PPhpy2) or tris(2-pyridyl)phosphine (Ppy3) under formation of neutral tricarbonyl complexes of the composition [M(CO)3X(L)] (M = Re, X = Br; M = Tc, X = Cl; L = PPhpy2 or Ppy3). In all isolated products, the ligands coordinate solely via two of their nitrogen atoms. All attempts to force a tripodal coordination of the phosphinopyridines failed. Removal of the bromo ligands from (NEt4)2[Re(CO)3Br3] by the addition of AgNO3 in THF/water, and subsequent reaction of the resulting [Re(CO)3(THF)3](NO3)with Ppy3 yielded the complex [Re(CO)3(NO3)(Ppy3-N,N′)] with a monodentate coordinated nitrato ligand. The products have been characterized spectroscopically and by X-ray structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号