首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time perthioborates with trigonal planar coordination of boron were prepared. Na2B2S5 (Pnma, a = 12.545(2) Å, b = 7.441(1) Å, c = 8.271(1) Å, Z = 4) and Li2B2S5 (Cmcm, a = 15.864(1) Å, b = 6.433(1) Å, c = 6.862(1) Å, Z = 4) were obtained by reaction of the metal sulfides with stoichiometric amounts of boron and an excess of sulfur (effective molar ratio M:B:S = 1:1:4) at 600°C (650°C) and subsequent annealing. The non-isotypic structures contain exactly planar [B2S5]2? groups consisting of five-membered B2S3 rings with one additional exocyclic sulfur on each of the boron atoms. The alkaline metal cations are four-coordinate (lithium) and (four + four)-coordinate (sodium) respectively.  相似文献   

2.
LiBaBS3 and LiBaB3S6: Two New Quaternary Thioborates with Trigonally Coordinated Boron LiBaBS3 (P21/c; a = 7.577(2) Å, b = 8.713(2) Å, c = 8.687(2) Å, β = 116.22(2)°; Z = 4) und LiBaB3S6 (Cc; a = 15.116(3) Å, b = 8.824(2) Å, c = 8.179(2) Å, β = 117.46(3)°; Z = 4) were prepared by reaction of stoichiometric amounts of the metal sulfides, boron, and sulfur at 750°C. The anionic part of the structure of the orthothioborate LiBaBS3 consists of isolated planar [BS3]3? anions. The crystal structure of the metathioborate LiBaB3S6 contains [B3S6]3? anions formed by six-membered B3S3 rings with three exocyclic sulfur atoms. The metal cations are situated between the anion units leading to a ninefold sulfur coordination of the barium atoms and to a fivefold (LiBaBS3) and fourfold (LiBaB3S6) coordination of the lithium atoms.  相似文献   

3.
Na2B2Se7, K2B2S7, and K2B2Se7: Three Perchalcogenoborates with a Novel Polymeric Anion Network Na2B2Se7 (I 2/a; a = 11.863(4) Å, b = 6.703(2) Å, c = 13.811(6) Å, β = 109.41(2)°; Z = 4), K2B2S7 (I 2/a; a = 11.660(2) Å, β = 6.827(1) Å, c = 12.992(3) Å, β = 106.78(3)°; Z = 4), and K2B2Se7 (I 2/a; a = 12.092(4) Å, b = 7.054(2) Å, c = 13.991(5) Å, β = 107.79(3)°; Z = 4) were prepared by reaction of stoichiometric amounts of sodium selenide (potassium sulfide) with boron and sulfur or of potassium selenide and boron diselenide, respectively, at 600°C with subsequent annealing. The crystal structures consist of polymeric anion chains of composition ([B2S7]2?)n or ([B2Se7]2?)n formed by spirocyclically connected five-membered B2S3 (B2Se3) rings and six-membered B2S4 (B2Se4) rings. The nine-coordinate alkaline metal cations are situated in between.  相似文献   

4.
The perseleno‐selenoborates Rb2B2Se7 and Cs3B3Se10 were prepared from the metal selenides, amorphous boron and selenium, the thallium perseleno‐selenoborates Tl2B2Se7 and Tl3B3Se10 directly from the elements in evacuated carbon coated silica tubes by solid state reactions at temperatures between 920 K and 950 K. All structures were refined from single crystal X‐ray diffraction data. The isotypic perseleno‐selenoborates Rb2B2Se7 and Tl2B2Se7 crystallize in the monoclinic space group I 2/a (No. 15) with lattice parameters a = 12.414(3) Å, b = 7.314(2) Å, c = 14.092(3) Å, β = 107.30(3)°, and Z = 4 for Rb2B2Se7 and a = 11.878(2) Å, b = 7.091(2) Å, c = 13.998(3) Å, β = 108.37(3)° with Z = 4 for Tl2B2Se7. The isotypic perseleno‐selenoborates Cs3B3Se10 and Tl3B3Se10 crystallize in the triclinic space group P1 (Cs3B3Se10: a = 7.583(2) Å, b = 8.464(2) Å, c = 15.276(3) Å, α = 107.03(3)°, β = 89.29(3)°, γ = 101.19(3)°, Z = 2, (non‐conventional setting); Tl3B3Se10: a = 7.099(2) Å, b = 8.072(2) Å, c = 14.545(3) Å, α = 105.24(3)°, β = 95.82(3)°, γ = 92.79(3)°, and Z = 2). All crystal structures contain polymeric anionic chains of composition ([B2Se7]2–)n or ([B3Se10]3–)n formed by spirocyclically fused non‐planar five‐membered B2Se3 rings and six‐membered B2Se4 rings in a molar ratio of 1 : 1 or 2 : 1, respectively. All boron atoms have tetrahedral coordination with corner‐sharing BSe4 tetrahedra additionally connected via Se–Se bridges. The cations are situated between three polymeric anionic chains leading to a nine‐fold coordination of the rubidium and thallium cations by selenium in M2B2Se7 (M = Rb, Tl). Coordination numbers of Cs+ (Tl+) in Cs3B3Se10 (Tl3B3Se10) are 12(11) and 11(9).  相似文献   

5.
BaB2S4: The first non‐oxidic Chalcogenoborate with Boron in a trigonal‐planar and tetrahedral Coordination Hitherto we know boron in a trigonal‐planar and a tetrahedral coordination within one crystal structure from boron oxides in various compounds. With the novel bariummetathioborate BaB2S4 we now report a crystal structure containing BS3 and BS4 units in the ratio 1 : 1 forming infinite chains along [001]. BaB2S4 was synthesized in a solid state reaction at a temperature of 800 °C from barium sulfide, amorphous boron and sulfur and crystallizes in the monoclinic space group Cc (no. 9) with the following lattice parameters: a = 6.6465(5) Å, b = 15.699(1) Å, c = 6.0306(5) Å, β = 110.96(1)°, Z = 4.  相似文献   

6.
Synthesis and Crystal Structures of Li4?2xSr2+xB10S19 (x ≈ 0.27) and Na6B10S18. Two Novel Thioborates with Highly Polymeric Macro-tetrahedral Networks Li4?2xSr2+xB10S19 (x ≈ 0.27) and Na6B10S18 were prepared from the reaction of strontium sulfide and lithium sulfide (sodium sulfide) with boron and sulfur at 700°C in graphitized silica tubes. Li4?2xSr2+xB10S19 (x ≈ 0.27) crystallizes in the monoclinic space group P21/c with a = 10.919(2) Å, b = 13.590(3) Å, c = 16.423(4) Å, and β = 90.48(2)°, Na6B10S18 in the tetragonal space group I41/acd with a = 14.415(3) Å, c = 26.137(4) Å. Both structures contain supertetrahedral B10S20 units which are linked through tetrahedral corners to form a three-dimensional polymeric network in the case of Na6B10S18 and one-dimensional chains in the case of Li4?2xSr2+xB10S19 (x ≈ 0.27). All boron atoms are in tetrahedral BS4 coordination (B? S bond lengths vary from 1.879(5) to 1.951(5) Å (1.875(10) to 1.987(9) Å)). The strontium and lithium (sodium) cations are located within large channels formed by the anions.  相似文献   

7.
Li5B7S13 and Li9B19S33: Two Lithium Thioborates with Novel Highly Polymeric Anion Networks Li5B7S13 (C2/c; a = 17.304(2) Å, b = 21.922(3) Å, c = 12.233(2) Å, β = 134.91(1)°; Z = 8) and Li9B19S33 (C2/c; a = 23.669(9) Å, b = 14.361(3) Å, c = 12.237(3) Å, β = 103.77(2)°; Z = 4) were prepared by reaction of stoichiometric amounts of lithium sulfide, boron, and sulfur at 750°C (Li5B7S13) and 700°C (Li9B19S33) with subsequent annealing. The crystal structures consist of interpenetrating, polymeric boron sulfur anion networks which are formed by corner-sharing of B4S10 and B10S20 units (Li5B7S13), or B19S36 units (Li9B19S33). The lithium cations are situated in between with a strong disorder in Li9B19S33.  相似文献   

8.
Sr3(BS3)2 and Sr3(B3S6)2: Two Novel Non‐oxidic Chalcogenoborates with Boron in a Trigonal‐Planar Coordination The thioborates Sr3(BS3)2 and Sr3(B3S6)2 were prepared from strontium sulfide, amorphous boron and sulfur in solid state reactions at a temperature of 1123 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction. Sr3(BS3)2 crystallizes in the monoclinic spacegroup C2/c (No. 15) with a = 10.187(4) Å, b = 6.610(2) Å, c = 15.411(7) Å, β = 102.24(3)° and Z = 4. The crystal structure of Sr3(B3S6)2 is trigonal, spacegroup R3¯ (Nr. 148), with a = 8.605(1) Å, c = 21.542(4) Å and Z = 3. Sr3(BS3)2 contains isolated [BS3]3— anions with boron in a trigonal‐planar coordination. The strontium cations are found between the layers of orthothioborate anions. Sr3(B3S6)2 consists of cyclic [B3S6]3— anions and strontium cations, respectively.  相似文献   

9.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

10.
The Perthioborates RbBS3, TIBS3, and Tl3B3S10 . RbBS3 (P21/c, a=7.082(2) Å, b=11.863(4) Å, c=5.794(2) Å, β=106.54(2)°) was prepared as colourless, plate-shaped crystals by reaction of stoichiometric amounts of rubidium sulfide, boron, and sulfur at 600°C and subsequent annealing. TlBS3 (P21/c, a=6.874(3) Å, b=11.739(3) Å, c=5.775(2) Å, β=113.08(2)°) which is isotypic with RbBS3 was synthesized from a sample of the composition Tl2S · 2 B2S3. The glassy product which was obtained after 7 h at 850°C was annealed in a two zone furnace for 400 h at 400→350°C. Yellow crystals of TlBS3 formed at the warmer side of the furnace. Tl3B3S10 (P1 , a=6.828(2) Å, b=7.713(2) Å, c=13.769(5) Å, α=104.32(2)°, β=94.03(3)°, γ=94.69(2)°) was prepared as yellow plates from stoichiometric amounts of thallium sulfide, boron, and sulfur at 850°C and subsequent annealing. All compounds contain tetrahedrally coordinated boron. The crystal structures consist of polymeric anion chains. In the case of RbBS3 and TlBS3 nonplanar five-membered B2S3 rings are spirocyclically connected via the boron atoms. To obtain the anionic structure of Tl3B3S10 every third B2S3 ring of the polymeric chains of MBS3 is to be substituted by a six-membered B(S2)2B ring.  相似文献   

11.
Three Novel Selenoborato- closo -dodecaborates: Syntheses and Crystal Structures of Rb8[B12(BSe3)6], Rb4Hg2[B12(BSe3)6], and Cs4Hg2[B12(BSe3)6] The three selenoborates Rb8[B12(BSe3)6] (P1, a = 10.512(5) Å, b = 10.450(3) Å, c = 10.946(4) Å, α = 104.53(3)°, β = 91.16(3)°, γ = 109.11(3)°, Z = 1), Cs4Hg2[B12(BSe3)6] (P1, a = 9.860(2) Å, b = 10.740(2) Å, c = 11.078(2) Å, α = 99.94(3)°, β = 90.81(3)°, γ = 115.97(3)°, Z = 1), and Rb4Hg2[B12(BSe3)6] (P1, a = 9.593(2) Å, b = 10.458(2) Å, c = 11.131(2) Å, α = 99.25(3)°, β = 91.16(3)°, γ = 116.30(3)°, Z = 1) were prepared from the metal selenides, amorphous boron and selenium by solid state reactions at 700 °C. These new chalcogenoborates contain B12 icosahedra completely saturated with six trigonal-planar BSe3 entities functioning as bidentate ligands to form a persubstituted closo-dodecaborate anion. The two isotypic compounds Rb4Hg2[B12(BSe3)6] and Cs4Hg2[B12(BSe3)6] are the first selenoborate structures containing a transition metal which are characterized by single crystal diffraction.  相似文献   

12.
Phosphaneimine and Phosphoraneiminato Complexes of Boron. Synthesis and Crystal Structures of [BF3(Me3SiNPEt3)], [BCl2(NPPh3)]2, [BCl2(NPEt3)]2, [B2Cl3(NPEt3)2]+BCl4?, and [B2Cl2(NPiPr3)3]+BCl4? The title compounds have been prepared from the corresponding silylated phosphaneimines and boron trifluoride etherate and boron trichloride, respectively. The compounds form white moisture sensitive crystals, which were characterized by 11B-nmr-spectroscopy, IR-spectroscopy and by crystal structure determinations. [BF3(Me3SiNPEt3)] : Space group P21/c, Z = 4, R = 0.032 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1361.0, b = 819.56, c = 1422.5 pm, β = 109.86°. The donor acceptor complex forms monomeric molecules with a B? N bond length of 157.8 pm. [BCl2(NPPh3)]2 · 2 CH2Cl2 : Space group P21/c, Z = 2, R = 0.049 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1184.6, b = 2086.4, c = 843.0 pm, β = 96.86°. The compound forms centrosymmetric dimeric molecules in which the boron atoms are linked to B2N2 four-membered rings with B? N distances of 152.7 pm via μ2-N bridges of the NPPh3 groups. [BCl2(NPEt3)]2 : Space group Pbca, Z = 4, R = 0.029 for reflections with I > 2σ(I). Lattice dimensions at ?90°C: a = 1269.5, b = 1138.7, c = 1470.3 pm. The compound has a molecular structure corresponding to the phenyl compound with B? N ring distances of 151.0 pm. [B2Cl3(NPEt3)2]+BCl4? : Space group Pbca, Z = 8, R = 0.034 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1309.3, b = 1619.8, c = 2410.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 155.1 and 143.1 pm via the μ2-N atoms of the NPEt3 groups. [B2Cl2(NPiPr3)3]+BCl4? · CH2Cl2: Space group Pna2, Z = 4, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1976.5, b = 860.2, c = 2612.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 153.7 and 150.5 pm via the μ2-N atoms of two of the NPiPr3 groups. The third NPiPr3 group is terminally connected to the sp2-hybridized boron atom with a B? N distance of 133.5 pm and with a B? N? P bond angle of 165.3°.  相似文献   

13.
Synthesis and Structure of Cs11[(WN2,5O1,5)2](N3)2, a Cesium Oxo Nitrido Monotungstate(VI) Azide Cs11[(WN2,5O1,5)2](N3)2 results from the reaction of a mixture of CsNH2, W and WO3 at 620 °C in autoclaves. It crystallizes monoclinic in the space group C2/m with the lattice parameters a = 12.421(4) Å, b = 11.568(6) Å, c = 10.516(4) Å, β = 118.71(3)° and Z = 4. The crystal structure is built up by isolated tetrahedra [WX4] with X = N, O, which are connected by cesium cations. Between the cesium ions lie azide ions separated from the anions [WX4]. The tungsten atoms and azide ions together build up the motif of a distorted arrangement of the CsCl structure type.  相似文献   

14.
Crystal and Molecular Structure, of S4N4 · 2C7H8 The structure of the title compound has been determined from threedimensional X-ray data. Crystals are monoclinic, with unit cell dimenions a = 16.532 Å, b = 8.563 Å, c = 10.880 Å, β = 103.2°, space group C? C2/c and Z = 4. Least squares refinement, by use of 1132 independent reflections measured on a diffractometer has reached 3.9%. In the S4N4·2C7H8 molecules the organic components are linked to two sulfur atoms of the S4N4, ring each.  相似文献   

15.
Rare Earth Halides Ln4X5Z. Part 3: The Chloride La4Cl5B4 – Preparation, Structure, and Relation to La4Br5B4, La4I5B4 La4Cl5B4 is synthesized by reaction of LaCl3, La metal and boron in sealed Ta containers at 1050 °C < T < 1350 °C. It crystallizes in the monoclinic space group C2/m with a = 16.484(3) Å, b = 4.263(1) Å, c = 9.276(2) Å and β = 120.06(3)°. Ce4Cl5B4 is isotypic, a = 16.391(3) Å, b = 4.251(1) Å, c = 9.180(2) Å and β = 120.20(3)°. The La atoms form strings of trans-edge shared La octahedra, and the B atoms inside the strings form B4-rhomboids, which are condensed to chains via opposite corners. The Cl atoms interconnect the channels according to La2La4/2Cli−i6/2Cli−a2/2Cla−i2/2. The crystal structures of the bromide and the iodide are comparabel, however, the interconnection of the strings is different in the three structure types, as 14 Cl, 13 Br and 12 I atoms surround the La6 octahedra.  相似文献   

16.
Cs2Ba(O3)4 · 2 NH3, the First Ionic Alkaline Earth Metal Ozonide Cs2Ba(O3)4 · 2 NH3 is the first ionic ozonide containing an alkaline earth metal cation. Its synthesis has been achieved via partial cation exchange of CsO3 dissolved in liquid ammonia. According to a single crystal X‐ray structure determination (Pnnm; a = 6.312(2) Å, b = 12.975(3) Å, c = 8.045(2) Å; Z = 2; R1 = 4.6%; 848 independent reflections) ozonide anions, cesium cations and ammonia molecules form a CsCl‐type arrangement, where Cs+ and NH3 occupy one half of the cation sites, each. Ba2+ is coordinated by four ozonide groups and two ammonia molecules. Because of a short hydrogen bond to one of the terminal oxygen atoms, the respective O–O‐distance in the ozonide ion is longer than the other. The shortest intermolecular O–O‐distance ever observed in ionic ozonides has been found in this compound, which can be taken as a first clue for the radical ozonide anion to dimerize like the isoelectronic SO2 does.  相似文献   

17.
The new compounds K6Nb4S22 and K6Ta4S22 ( I ) have been synthesised by the reaction of NbS2 or Ta metal in a K2S3 flux. Using TaS2 as educt a second modification of K6Ta4S22 ( II ) is obtained. K6Nb4S22 and K6Ta4S22 (form I ) crystallise in the monoclinic space group C2/c with a = 35.634 (2)Å, b = 7.8448 (4)Å, c = 12.1505 (5)Å, β = 100.853 (5)°, V = 3335.8 (3)Å3, and Z = 4 for K6Nb4S22 and a = 35.563 (7) Å, b = 7.836 (2)Å, c = 12.139 (2)Å, β = 100.56 (3)°, V = 3325.5 (2)Å3, and Z = 4 for K6Ta4S22 ( I ). The second modification K6Ta4S22 (form II ) crystallises in the monoclinic space group P21/c with a = 7.5835 (6)Å, b = 8.7115 (5)Å, c = 24.421 (2)Å, β = 98.733 (9)°, V = 1594.6 (2)Å3, and Z = 2. The structures consist of [M4S22]6— anions composed of two M2S11 sub‐units which are linked into M4S22 units via terminal sulfur ligands. The anions are well separated by the K+ cations. Differences between the structures of the title compounds and those with the heavier alkali cations Rb+ and Cs+ are caused by the different arrangement of the [M4S22]6— anions around the cations and the different S2—/S22— binding modes. The thermal behaviour of both modifications was investigated using differential scanning calorimetry (DSC). From these investigations there is no hint for a polymorphic transition between the two forms. After heating crystals of form II above the melting point and cooling the melt to room temperature a crystalline powder of form I can be isolated.  相似文献   

18.
On Chalcogenolates. 98. Crystal and Molecular Structure of Tungsten(IV) Ethylthioxanthate W[S2C? SC2H5]4 crystallizes with Z = 2 in the tetragonal space group P42/n with cell dimensions a = 11.108(5) Å and c = 9.489(5) Å. The crystal and molecular structure has been determined from single crystal X-ray data at ?160°C and refined to a conventional R of 0.058. The structure consists of isolated molecules. The tungsten atom is bonded to eight sulfur atoms from four chelating thioxanthate ligands. The coordination geometry approximates very closely to triangularly dodecahedral.  相似文献   

19.
Crystal Structure of Tetracäsium-μ-oxo-decachlordiosmate(IV), Cs4[Os2OCl10] The anhydrous binuclear complex Cs4[Os2OCl10] crystallizes with an orthorhombic unit cell, Pcab, a = 12.521, b = 13.994, c = 11.798 Å and Z = 4 formula units. The complex anion forms corner sharing octahedrons tetragonally deformed. The interatomic distances are Os ? O = 1.778 Å and Os ? Cl = 2.370 (4×) and 2.433 Å (1×) respectively. The Cs atoms are coordinated differently. The interatomic distances Cs ? Cl range from 3.46 to 3.87 Å. The structure is discussed in connection with analogous complexes. Details of other polynuclear complexes of Os are added.  相似文献   

20.
Metal Sulfur Nitrogen Compounds. 16. Products of the Reaction of Lead- and Tin Salts with S4N4. Structures of PbN2S2 · NH3, PbN2S2, and SnCl4 · 2S4N4 PbN2S2 · NH3 is monoclinic, P21/a, a = 5.671, b = 16.123, c = 6.102 Å, β = 95.12°, Z = 4, PbN2S2, however, orthorhombic, P212121, a = 4.375, b = 7.654, c = 12.274 Å, Z = 4. The planar five-membered PbN2S2 rings in both compounds show no remarkable differences. In PbN2S2 · NH3, the NH3 molecule is bound to Pb perpendicularly to the plane of the ring. The structure of the long known addition compound SnCl4 · 2S4N4 was determined. It is orthorhombic, Pc21b, a = 11.467, b = 11.995, c = 12.374 Å, Z = 4. Sn shows sixfold coordination, the two S4N4 rings are attached to Sn trans to each other via a N atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号