首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G be a connected, undirected graph without loops and without multiple edges. For a pair of distinct vertices u and v, a minimum {u, v}-separating set is a smallest set of edges in G whose removal disconnects u and v. The edge connectivity of G, denoted λ(G), is defined to be the minimum cardinality of a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G. We introduce and investigate the eavesdropping number, denoted ε(G), which is defined to be the maximum cardinality of a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G. Results are presented for regular graphs and maximally locally connected graphs, as well as for a number of common families of graphs.  相似文献   

2.
For a vertex v of a graph G, we denote by d(v) the degree of v. The local connectivity κ(u, v) of two vertices u and v in a graph G is the maximum number of internally disjoint uv paths in G, and the connectivity of G is defined as κ(G)=min{κ(u, v)|u, vV(G)}. Clearly, κ(u, v)?min{d(u), d(v)} for all pairs u and v of vertices in G. Let δ(G) be the minimum degree of G. We call a graph G maximally connected when κ(G)=δ(G) and maximally local connected when for all pairs u and v of distinct vertices in G. In 2006, Hellwig and Volkmann (J Graph Theory 52 (2006), 7–14) proved that a connected graph G with given clique number ω(G)?p of order n(G) is maximally connected when As an extension of this result, we will show in this work that these conditions even guarantee that G is maximally local connected. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 192–197, 2010  相似文献   

3.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

4.
We prove that a 2-connected graph G of order p is hamiltonian if for all distinct vertices u and v, dist(u,v) = 2 implies that |N(u) U N(v)| ? (2p - 1)/3. We also demonstrate hamiltonian-connected and traceability properties in graphs under similar conditions.  相似文献   

5.
Spanning trails     
For a graph G with distinguished vertices u and v, we give a sufficient condition for the existence of a (u, v)-trail containing every vertex of G.  相似文献   

6.
Let M be a hyperbolic surface and (M) its extended mapping class group. We show that (M) is isomorphic to the automorphism group of the following graph G(M). The set of vertices of G(M) is the set S(M) of nonseparating simple closed geodesics of M. Two vertices u and v of S(M) are related by an edge if u and v intersect exactly once in M. The graph G(M) can be thought of as a combinatorial model for M.  相似文献   

7.
The distance between a pair of vertices u, v in a graph G is the length of a shortest path joining u and v. The diameter diam(G) of G is the maximum distance between all pairs of vertices in G. A spanning tree T of G is diameter preserving if diam(T) = diam(G). In this note, we characterize graphs that have diameter-preserving spanning trees.  相似文献   

8.
Let G be a graph on n vertices and N2(G) denote the minimum size of N(u) ∪ N(v) taken over all pairs of independent vertices u, v of G. We show that if G is 3-connected and N2(G) ? ½(n + 1), then G has a Hamilton cycle. We show further that if G is 2-connected and N2(G) ? ½(n + 3), then either G has a Hamilton cycle or else G belongs to one of three families of exceptional graphs.  相似文献   

9.
Graph Connectivity After Path Removal   总被引:1,自引:0,他引:1  
Let G be a graph and u, v be two distinct vertices of G. A u—v path P is called nonseparating if G—V(P) is connected. The purpose of this paper is to study the number of nonseparating u—v path for two arbitrary vertices u and v of a given graph. For a positive integer k, we will show that there is a minimum integer (k) so that if G is an (k)-connected graph and u and v are two arbitrary vertices in G, then there exist k vertex disjoint paths P 1[u,v], P 2[u,v], . . ., P k [u,v], such that G—V (P i [u,v]) is connected for every i (i = 1, 2, ..., k). In fact, we will prove that (k) 22k+2. It is known that (1) = 3.. A result of Tutte showed that (2) = 3. We show that (3) = 6. In addition, we prove that if G is a 5-connected graph, then for every pair of vertices u and v there exists a path P[u, v] such that G—V(P[u, v]) is 2-connected.* Supported by NSF grant No. DMS-0070059 Supported by ONR grant N00014-97-1-0499 Supported by NSF grant No. 9531824  相似文献   

10.
If G is a block, then a vertex u of G is called critical if G - u is not a block. In this article, relationships between the localization of critical vertices and the localization of vertices of relatively small degrees (especially, of degree two) are studied. A block is called semicritical if a) each edge is incident with at least one critical vertex and b) each vertex of degree two is critical. Let G be a semicritical block with at least six vertices. It is proved that A) there exist distinct vertices u2, v1, u2, and v2 of degree two in G such that u1v1 and u2v2 are edges of G, and u1v2, and u2v2 are edges of the complement of G, and B) the complement of G is a block with no critical vertex of degree two.  相似文献   

11.
For an integer i, a graph is called an Li-graph if, for each triple of vertices u, v, w with d(u, v) = 2 and w (element of) N(u) (intersection) N(v), d(u) + d(v) ≥ | N(u) (union) N(v) (union) N(w)| —i. Asratian and Khachatrian proved that connected Lo-graphs of order at least 3 are hamiltonian, thus improving Ore's Theorem. All K1,3-free graphs are L1-graphs, whence recognizing hamiltonian L1-graphs is an NP-complete problem. The following results about L1-graphs, unifying known results of Ore-type and known results on K1,3-free graphs, are obtained. Set K = lcub;G|Kp,p+1 (contained within) G (contained within) Kp V Kp+1 for some ρ ≥ } (v denotes join). If G is a 2-connected L1-graph, then G is 1-tough unless G (element of) K. Furthermore, if G is as connected L1-graph of order at least 3 such that |N(u) (intersection) N(v)| ≥ 2 for every pair of vertices u, v with d(u, v) = 2, then G is hamiltonian unless G ϵ K, and every pair of vertices x, y with d(x, y) ≥ 3 is connected by a Hamilton path. This result implies that of Asratian and Khachatrian. Finally, if G is a connected L1-graph of even order, then G has a perfect matching. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

13.
Let G be a 2‐connected graph, let u and v be distinct vertices in V(G), and let X be a set of at most four vertices lying on a common (u, v)‐path in G. If deg(x) ≥ d for all xV(G) \ {u, v}, then there is a (u, v)‐path P in G with XV(P) and |E(P)| ≥ d. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 55–65, 2000  相似文献   

14.
Let G be a connected graph with vertex set V(G). The degree distance of G is defined as ${D'(G) = \sum_{\{u, v\}\subseteq V(G)} (d_G(u) + d_G (v))\, d(u,v)}$ , where d G (u) is the degree of vertex u, d(u, v) denotes the distance between u and v, and the summation goes over all pairs of vertices in G. In this paper, we characterize n-vertex unicyclic graphs with given matching number and minimal degree distance.  相似文献   

15.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 ≤ kn/2, and deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003  相似文献   

16.
For S ? V(G) the S-center and S-centroid of G are defined as the collection of vertices uV(G) that minimize es(u) = max {d(u, v): vS} and ds(u) = ∑u∈S d(u, v), respectively. This generalizes the standard definition of center and centroid from the special case of S = V(G). For 1 ? k ?|V(G)| and uV(G) let rk(u) = max {∑sS d(u, s): S ? V(G), |S| = k}. The k-centrum of G, denoted C(G; k), is defined to be the subset of vertices u in G for which rk(u) is a minimum. This also generalizes the standard definitions of center and centroid since C(G; 1) is the center and C(G; |V(G)|) is the centroid. In this paper the structure of these sets for trees is examined. Generalizations of theorems of Jordan and Zelinka are included.  相似文献   

17.
The Wiener index of a graph G is defined as W(G)=∑ u,v d G (u,v), where d G (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order nk; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.  相似文献   

18.
As introduced by F.Harary in 1994, a graph G is said to be an integral sum graph if its vertices can be given a labeling f with distinct integers so that for any two distinct vertices u and v of G, uv is an edge of G if and only if f(u)+f(v) = f(w) for some vertex w in G.  相似文献   

19.
A new sufficient condition for Hamiltonian graphs   总被引:1,自引:0,他引:1  
The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u),d(v)}≥n/2 for each pair of vertices u and v with distance d(u,v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u,vV(G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)|+d(u),|N(w)∪N(z)|+d(v)}≥n for every choice of vertices x,y,u,w,z,v such that d(x,y)=d(y,u)=d(w,z)=d(z,v)=d(u,v)=2 and where x,y and u are three distinct vertices and w,z and v are also three distinct vertices (and possibly |{x,y}∩{w,z}| is 1 or 2), then G is Hamiltonian.  相似文献   

20.
The cutting number of a vertex v of a finite graph G = (V,E) is a natural measure of the extent to which the removal of v disconnects the graph. Precisely, the cutting number c(v) of v is defined as the number of pairs of vertices {u,w} of G such that u,wv and every u-w path contains v. The cutting number c(G) of G is the maximum value of c(v) over all vertices in V. We provide exact bounds on the cutting number of G in terms of order and diameter of the graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号