共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2. 相似文献
2.
3.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XIX. [Co4P2(PtBu2)2(CO)8] and [{Co(CO)3}2P4tBu4] from Co2(CO)8 and tBu2P–P=P(Me)tBu2 Co2(CO)8 reacts with tBu2P–P=P(Me)tBu2 yielding the compounds [Co4P2(PtBu2)2(CO)8] ( 1 ) and [{η2tBu2P=P–P=PtBu2}{Co(CO)3}2] ( 2 a ) cis, ( 2 b ) trans. In 1 , four Co and two P atoms form a tetragonal bipyramid, in which two adjacent Co atoms are μ2‐bridged by tBu2P groups. Additionally, two CO groups are linked to each Co atom. In 2 a and 2 b , each of the Co(CO)3 units is η2‐coordinated to the terminal P2 units resulting in the cis‐ and trans‐configurations 2 a and 2 b . 1 crystallizes in the orthorhombic space group Pnnm (No. 58) with a = 879,41(5), b = 1199,11(8), c = 1773,65(11) pm. 2 a crystallizes in the monoclinic space group P21/n (No. 14) with a = 875,97(5), b = 1625,36(11), c = 2117,86(12) pm, β = 91,714(7)°. 2 b crystallizes in the triclinic space group P 1 (No. 2) with a = 812,00(10), b = 843,40(10), c = 1179,3(2) pm, α = 100,92(2)°, β = 102,31(2)°, γ = 102,25(2)°. 相似文献
4.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°). 相似文献
5.
Reactions of [{M(μ‐Cl)(coe)2}2] (M = Rh, Ir; coe = cis‐cyclooctene) with the secondary phosphane tBu2PH under various molar ratios were investigated. Probably, for kinetic reasons, the reaction behavior of the rhodium species differed from that of the iridium analogue in some instances. During these studies complexes [MCl(tBu2PH)3] [M = Rh ( 1 ), Ir ( 2 )] were isolated, and solution variable‐temperature 31P{1H} NMR studies revealed that these complexes show a conformational rigidity on the NMR time scale. Spectra recorded in the temperature range from 173 to 373 K indicated in each case only one rotamer containing three chemically nonequivalent phosphanes due to the restricted rotation of these ligands about the M–P bonds and the tert‐butyl substituents around the P–C(tBu) bonds, respectively. Compound 1 showed in solution already at room temperature in several solvents a dissociation of a phosphane ligand affording the known complex [{Rh(μ‐Cl)(tBu2PH)2}2] beside the free phosphane. In contrast to these findings, the iridium analogue 2 remained completely unchanged under similar conditions and exhibited, therefore, some kinetic inertness. For a better understanding of the NMR spectroscopic investigations, the molecular structure of 1 in the solid state was confirmed by X‐ray crystallography. 相似文献
6.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°). 相似文献
7.
Ingo Krossing Ulli Englert Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2002,628(2):446-452
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?. 相似文献
8.
Qutaiba Abu‐Salem Cäcilia Maichle‐Mößmer Elke Niquet Norbert Kuhn Prof. Dr. 《无机化学与普通化学杂志》2008,634(14):2463-2465
1,3‐Dimethylcyanuric acid (DMCH) forms on deprotonation and reaction with TlF its thallous salt Tl[DCM] ( 2 ) which is converted to the phosphonium salt [PPh4][DCM] ( 3 ). On the reaction with M(CO)6, the pentacarbonylmetalate salts [Ph4P][(DMC)M(CO)5], M = Cr ( 4a ), Mo ( 4b ) and W ( 4c ) are obtained. IR and NMR data of 4 reveal the DMC anion ( 1 ) to have coordination properties similar to those of pyridine. The crystal structures of 4a and 4c are reported. 相似文献
9.
Reaction of Mo(CO)6 with p-H3CO-C6H4SNa and Et4NCl · H2O in CH3CN afforded a dinuclear molybdenum(0) compound [Et4N]2[Mo2 (CO)8 (SC6H4-OCH3-p)2] (1). The crystal structure was determined by X-ray diffraction. The crystallographic data: C38H54Mo2N2O10S2, Mr = 954.87, triclinic, P-1, a = 11.348 (7), b =11.616(5), c=10.065(7) A, a=113.86(4), β=111.39(5), γ=91.92(5)°, V=1104.0(1) A3, Z=1, Dc=1.44 g/cm3, F(000)=492, μ=7.0cm-1, Final R=0. 046 and Rw=0. 049 for 2657 reflections with I>3. Oσ(I). The X-ray structure analysis revealed that the Mo2S2 core of 1 is planar. The geometry around each Mo atom is a distorted octahedron, the two octahedrons form an edge-sharing bioctahedron. The bond. In addition, the 95Mo NMR chemical shift of 1 is discussed. 相似文献
10.
The triligate trimetallic complexes, [{M(CO)5}3(Pf-Pf-Pf)] and tetraligate tetrametallic complexes, [{M(CO)5}4(P-Pf3)] (M = Cr and Mo), were prepared from [M(CO) 6] and the corresponding ligands in MeCN/CH2Cl2 promoted by Me3NO at 0 °C. Crystals of trimer lb are monoclinic, space group P 21/n, with a = 13.407(3), b = 15.002(5), c = 26.52(1) Å, β = 90.65(2)°, Z = 4, and R = 0.060 for 2760 observed reflections. Crystals of tetramer 2a are monoclinic, space group P 21/c, with a – 14.183(8), b = 29.880(4), c = 16.103(2) Å, β = 94.98(3)°, Z = 4, and R = 0.039 for 5014 observed reflections. Crystals of 2b are monoclinic, space group C 2/c, with a = 42.120(8), b = 13.679(1), c = 23.486(2) Å, β = 92.14(1)°, Z = 8, and R = 0.032 for 6897 observed reflections. Each phosphorus atom of the ligands is coordinated to the M(CO)5 moiety in each title compounds. The geometry of the four metals is a distorted tetrahedron for the tetramers. 相似文献
11.
New Arsinidene-bridged Multinuclear Cluster Complexes of Ag and Au. The Crystal Structures of [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3, PMenPr2, PnPr3), [M4(As4Ph4)2(PR3)4], (M = Ag, PR3 = PEt3, PnPr3; M = Au, PR3 = PnPr3), [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] The reaction of AgCl with PhAs(SiMe3)2 in presence of tertiary phosphines (PR3) leads to arsinidene-bridged silver clusters with the composition [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3 1 , PMenPr2 2 , PnPr3 3 ). Further it is possible to obtain the multinuclear complexes [Ag4(As4Ph4)2(PR3)4], (PR3 = PEt3 4 , PMenPr2 5 ). In analogy to that [PMe3AuCl] reacts with PhAs(SiMe3)2 and PnPr3 to form the compound [Au4(As4Ph4)2(PnPr3)4] 6 , which is isostructurell to 4 and 5 . The gold cluster [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] 7 was obtained from the same solution. The structures were characterized by X-ray single crystal structure analysis. (Crystallographic data see “Inhaltsübersicht”) 相似文献
12.
Fatma S. M. Hassan Ahmed F. Al-Hossainy Adila E. Mohamed 《Phosphorus, sulfur, and silicon and the related elements》2013,188(11):2996-3022
Reaction of coordinated (diphenylphosphino)methane and ketones or aldehydes have been characterized by 31P{H1}-NMR, 1H{31P}-NMR, and UV/vis spectroscopy in dichloromethane. Group VI metals hexacarbonyl [M(CO)6 where M = Cr, Mo, and W] reacted with (diphenylphosphino)methane, [(Ph2P)2CH2], to give [(OC)4M{(Ph2P)2CH2}] depending upon the reaction conditions. Condensation of [(CO)4M{(Ph2P)2CH2}] with different ketones or aldehydes forms [(CO)4M{(Ph2P)2C = CR1R2}]. Complexes of the types [(OC)4M{(Ph2P)2C = CR1R2}] reacted with hydrazine in a Michael addition to give [(CO)4M{(Ph2P)2CHC(R1R2)NHNH2}](1.3a–e), which condensed with different ketones and aldehydes to give complex of the type [(CO)4M{(Ph2P)2CHC(R1R2)NHN = C(R3)] (1.4a–e). The structures of the complexes are discussed on the basis of elemental analysis (EA), IR,1H-NMR, 31P-NMR spectroscopic data, and FAB mass spectra. The UV/vis spectra show two absorption bands with the low energy band moving to lower energy with increasing substitution on the (diphenylphosphino) methane (dppm) (a bathochromic effect). 相似文献
13.
Christian Logemann Daniel Gunzelmann Prof. Dr. Thorsten Klüner Prof. Dr. Jürgen Senker Prof. Dr. Mathias S. Wickleder 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(48):15495-15503
The reactions of group 14 tetrachlorides MCl4 (M=Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures lead to the unique complex ions [M(S2O7)3]2?, which show the central M atoms in coordination with three chelating S2O72? groups. The mean distances M? O within the anions increase from 175.6(2)–177.5(2) pm (M=Si) to 186.4(4)–187.7(4) pm (M=Ge) to 201.9(2)–203.5(2) pm (M=Sn). These distances are reproduced well by DFT calculations. The same calculations show an increasing positive charge for the central M atom in the row Si, Ge, Sn, which can be interpreted as the decreasing covalency of the M? O bonds. For the silicon compound (NH4)2[Si(S2O7)3], 29Si solid‐state NMR measurements have been performed, with the results showing a signal at ?215.5 ppm for (NH4)2[Si(S2O7)3], which is in very good agreement with theoretical estimations. In addition, the vibrational modes within the [MO6] skeleton have been monitored by Raman spectroscopy for selected examples, and are well reproduced by theory. The charge balance for the [M(S2O7)3]2? ions is achieved by monovalent A+ counter ions (A=NH4, Ag), which are implemented in the syntheses in the form of their sulfates. The sizes of the A+ ions, that is, their coordination requirements, cause the crystallographic differences in the crystal structures, although the complex [M(S2O7)3]2? ions remain essentially unaffected with the different A+ ions. Furthermore, the nature of the A+ ions influences the thermal behavior of the compounds, which has been monitored for selected examples by thermogravimetric differential thermal analysis (DTA/TG) and XRD measurements. 相似文献
14.
Quantum mechanical ab initio calculations at the MP2 and CCSD(T) level of theory have been used to investigate the geometries and bond energies of the complexes M(CO)6–x(H2)x (M = Cr, Mo, W; x = 1, 2, 3). The theoretically predicted M(CO)5–(H2) bond dissociation energies are in excellent agreement with experimental values. The M–(H2) dissociation energies of the bis- and tris-dihydrogen complexes are very similar to the values for the mono-dihydrogen complexes. In M(CO)5(H2) the dihydrogen ligand prefers an eclipsed conformation relative to the equatorial carbonyl groups. For M(CO)4(H2)2 the cis and trans isomers are nearly equal in energy for M = W, while a cis configuration is favoured for M = Cr. For M(CO)3(H2)3 the facial configurations are more stable than the meridial structures for all three metals M. The charge decomposition analysis (CDA) classifies dihydrogen as a donor ligand with moderate acceptor properties. In trans-M(CO)4(H2)2 back donation is increased and the M–(H2) bonds are stronger than in M(CO)5–(H2). Back donation in M(CO)3(H2)3 is slightly weaker than in the mono-dihydrogen complexes M(CO)5(H2). 相似文献
15.
Phosphido- and Arsenido-bridged Dinuclear Complexes. Synthesis and Molecular Structure of (η5-C5H4R)2Zr{μ-P(SiMe3)2}2M(CO)4 (R = Me, M = Cr; R = H, M = Mo) and Synthesis of (η5-C5H5)2Zr{μ-As(SiMe3)2}2Cr(CO)4 The reaction of (η5-C5H4R)2Zr{E(SiMe3)2}2 with M(CO)4(NBD) (NBD = norbornadiene) yields the dinuclear phosphido- or arsenido-bridged complexes (η5-C5H4R)2Zr{μ-E(SiMe3)2}2M(CO)4 (R = Me, E = P, M = Cr ( 1 ); R = H, E = P, M = Mo ( 2 ); R = H, E = As, M = Cr ( 3 )). No formation of dinuclear complexes was observed in the reaction of (η5-C5H4Me)2Zr{P(SiMe3)2}2 with Ni(PEt3)4, Ni(CO)2(PPh3)2 or with NiCl2(PPh3)2 in the presence of Mg. Complexes 1 – 3 were characterised spectroscopically (i. r., n. m. r., m. s.), and X-ray structure investigations were carried out on 1 and 2 . The central four-membered ZrP2M ring is slightly puckered (dihedral angle between planes ZrP2/CrP2 14.7°, ZrP2/MoP2 14.2°). The Zr? P bond lengths are equivalent ( 1 : Zr? P1 2.654(4), Zr? P2 2.657(4) Å; 2 : Zr? P1 2.6711(9), Zr? P2 2.6585(7) Å), as are the M? P bond lengths (M = Cr ( 1 ): Cr? P1 2.513(4), Cr? P2 2.502(4) Å; M = Mo ( 2 ): Mo? P1 2.6263(7), Mo? P2 2.6311(10) Å). The long Zr ··· M distances of 3.414 Å (M = Cr ( 1 )) and 3.461 Å (M = Mo ( 2 )) indicate the absence of a metal-metal bond. 相似文献
16.
Three heterometallic supramolecular complexes [Cu2(pn)4(Mo(CN)8)·4H2O] (pn = diaminopropane) ( 1 ), [Cu2(pn)4(W(CN)8)·4H2O] ( 2 ) and [Cu2(1,2‐pn)4(H2O) (W(CN)8)·3H2O] ( 3 ) have been synthesized and structurally characterized by single‐crystal X‐ray diffraction studies. Complexes 1 – 3 exhibit three different networks. In 1 , the copper(II) ion is pentacoordinate with a distorted square‐pyramidal arrangement and the network is formed by the incorporation of coordinative linkage between the μ2 bridge of [Mo(CN)8]4– and copper(II) ions and hydrogen‐bonding interactions. In 2 , the copper(II) ion exhibits a distorted square‐pyramidal arrangement and the network is formed by the hydrogen bonded trinuclear complexesof [Cu2(pn)2(W(CN)8)]. In 3 , the copper(II) ions show twodifferent distorted octahedral arrangements. The network structure of 3 is formed by the hydrogen‐bonded complex chains of [Cu2(1,2‐pn)2(W(CN)8)]. 相似文献
17.
The crystal structure of trans-pyH[MoBr4py2] has been determined: orthorhombic, Pnma (No. 62), a = 16.197(3), b = 13.995(3), c = 8.615(1) Å, Z = 4, Dc = 2.23, Do = 2.20(3) g/cm3, V = 1 953(1) Å3. R1, Rw = 0.057 and 0.053. Trans-[MoBr4py2]? anions with staggered conformation of pyridine rings are located on the mirror planes. Mo? Br, Mo? N(pyridine) distances are 2.593(1), 2.573(1), 2.227(8) and 2.213(7) Å. Cations are located on the symmetry centers. The cation in trans-pyH[MBr4py2] can be replaced. Trans-NH4[MBr4py2] · H2O, Cs[MBr4py2], LH[MBr4py2] (M = Mo, W; L = 4-methylpyridine, 4-pic; 2,2′-bipyridyl, bipy) were prepared. The compounds of molybdenum and tungsten with the same chemical composition are isostructural. All compounds react with pyridine and 4-methylpyridine. The products are trans-MBr3L3, and in the case of molybdenum, also trans-MoBr3py2(4-pic). Bromine oxidizes trans-MI[MBr4py2] to trans-MBr4py2. 相似文献
18.
水热条件下,合成了三个新的配合物[Ni(en)3] (ndt) ·H2O 1,
[Co(en)3] (ndt) ·H2O 2 和[Mn(en)3] (ndt) ·H2O
3。晶体结构通过X-射线单晶衍射进行了表征。三个配合物均属于单斜晶系,Cc空间群。[M(en)3]2+阳离子、ndt阴离子和结晶水分子通过氢键自组装出相同结构的三维网。通过紫外-可见-近红外漫反射光谱对这三个配合物的光吸收性能和能带进行了测定。 相似文献
19.
Tri(1-cyclohepta-2,4,6-trienyl)phosphane, P(C7H7)3, and Tetra(1-cyclohepta-2,4,6-trienyl)phosphonium Tetrafluoroborate, [P(C7H7)4]BF4 The reaction of tris(trimethylsilyl)phosphane, P(SiMe3)3, with tropylium bromide, C7H7+Br?, in polar solvents such as dichloromethane or tetrahydrofuran gives P(C7H7)3 ( 1 ) and [P(C7H7)4]Br ( 2a ). According to the X-ray crystallographic structure determinations, all 1-cyclohepta-2,4,6-trienyl substituents are present in the boat conformation in both P(C7H7)3 ( 1 ) and the phosphonium salt, [P(C7H7)4]BF4 ( 2b ). The boat-shaped C7H7 rings are significantly more flattened if the phosphorus occupies the axial rather than the equatorial position at the ring substituent. Addition of a chalcogen to the lone pair at the central phosphorus atom of 1 leads to the chalcogena-phosphoranes EP(C7H7)3 (E = O ( 3a ), S ( 3b ), Se ( 3c )). The new 1-cyclohepta-2,4,6-trienyl-phosphorus compounds 1, 2 b and 3a–c were characterized by their 1H, 13C, and 31P NMR spectra in C6D6 solution. 相似文献
20.
Antonio Palazzi Piera Sabatino Silvia Bordoni Carlo Castellari 《Journal of organometallic chemistry》2004,689(14):2324-2337
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a. 相似文献