首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Crystal and molecular structures of the planar neutral ligand, C26H16N8, and the four isomorphous five-coordinated metal complexes, [M(C26H16N8)(H2O)], M = Mn(II), Co(II), Cu(II), Zn(II), have been determined from three-dimensional X-ray diffraction data. The free ligand hpH2, C26H16N8, belongs to the P 21/c space group with Z=2, a=4.142(3), b=23.736(6), c=10.338(3) Ä, β=94.66(6)°. The metal complexes monohydrate Mhp-H2O all belong to the orthorhombic Pcab space group with Z=8. The dimensions are roughly 8.8×19.3×23.7 Å3. In each structure, the macrocyclic ligand has an almost planar conformation which differs from the saddle shaped ligand hydrate (hpH2·H2O) and the nickel complex [Nihp]5. The distances from the center of the macrocyclic ring to the nitrogen atom of the free ligand are 1.907(6) and 2.245(6)Å. The coordination geometry in these four complexes is square pyramidal with a water molecule as an axial ligand. The bond distances of M(II)-O(H2O), M(II)-N1 (imine), M(II)-N3 (pyridine) are: 2.19(1), 2.00(2), 2.27(2)Å respectively for the manganese complex; 2.08(1), 1.97(1), 2.23(1)Å for the cobalt complex; 2.33(1), 1.92(3), 2.18(1)Å for the copper complex; 2.110(5), 1.964(6), 2.252(6)Å for the zinc complex. The variation of metal-ligand distances can be correlated to the metal d orbital occupancy. A comparison with similar ligands will be presented.  相似文献   

2.
Summary Stability constants of binary (ML, ML2) and ternary (MAL) complexes, where M=CoII, NiII, CuII and ZnII; A-iminodiacetic acid (ida),N-methyliminodiacetic acid (Me-ida), anthranilatediacetic acid (ada), nitrilotriacetic acid (nta); LH2=salicylaldoxime have been determined at 25° C at 0.1M KNO3 ionic strength by the Irving-Rossotti technique. K MAL MA is always lower than K ML M and KMI 2 ML . In the ternary systems studied, the K MAL ML values lie in the sequence: K M(ida)L M(ida) >K M(Me-ida)L M(Me-ida) >K M(nta)L M(nta) >K M(ada)L M(ada) . For CuII, the K Cu(nta)L Cu(nta) and K Cu(ada)L Cu(ada) values are significantly reduced compared to all other primary ligands. For different primary ligands, the K MAL MA sequence is reversed compared to K MA M , but for A=ada and nta their relative positions remain unaltered in both binary and ternary systems. The results have been explained in the light of different astatistical factors such as electrostatic effects, steric hindrance, change of electronegativity of the central metal and stereochemical factors.  相似文献   

3.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

4.
Equilibrium and solution structural study of mixed-metal-mixed-ligand complexes of Cu(II), Ni(II) and Zn(II) with L-cysteine, L-threonine and imidazole are conducted in aqueous solution by potentiometry and spectrophotometry. Stability constants of the binary, ternary and quaternary complexes are determined at 25 ±1°C and in I= 0.1 M NaClO4. The results of these two methods are made selfconsistent, then rationalized assuming an equilibrium model including the species H3A, H2A, A, BH, B, M(OH), M(OH)2, M(A), MA(OH), M(B), M(A)(B), M2(A)2(B), M2(A)2(B-H), M1M2(A)2(B) and M1M2(A)2(B-H) (where the charges of the species have been ignored for the sake of simplicity) (A = L-cysteine, L-threonine, salicylglycine, salicylvaline and BH = imidazole). Evidence of the deprotonation of BH ligand is available at alkalinepH. N1H deprotonation of the bidentate coordinated imidazole ligand in the binuclear species atpH > 70 is evident from spectral measurements. Stability constants of binary M(A), M(B) and ternary M(A)(B) complexes follow the Irving-Williams order.  相似文献   

5.
Summary Complexes of the type M(AcLeu)2 · B2 (M = CoII, NiII or ZnII; B = H2O, py, 3-pic, 4-pic; AcLeu =N-acetyl-DL-leucinate ion) and M(AcLeu)2 B (M = CoII or ZnII and B = o-phen) were prepared and investigated by means of magnetic and spectroscopic measurements. The i.r. spectra of all the complexes are consistent with bidentate coordination of the amino acid to the metal ion. The room temperature solid state electronic spectra indicate that the symmetry of this species is closer toD 4h and that MO6 and MO4N2 chromophores are present in the M(AcLeu)2 · 2 H2O and M(AcLeu)2Bn · x H2O (B = py, 3-pic, 4-pic, n=2 and x=0 for M = NiII; B = o-phen, n=1 and x=0 for M = CoII; B = py, 3-pic, 4-pic, n=1 and x=1 for M = CoII) complexes, respectively. By comparing the Dq values of the amino acid and those of other N-substituted amino acids previously studied, a spectrochemical series of the the cobalt(II) and nickel(II) complexes is proposed. The1 H n.m.r. spectra of the zinc(II) complexes confirm the proposed stereochemistry.  相似文献   

6.
Co(II), Ni(II), Cu(II) and Cd(II) chelates with 1-aminoethylidenediphosphonic acid (AEDP, H4L1), α-amino benzylidene diphosphonic acid (ABDP, H4L2), 1-amino-2-carboxyethane-1,1-diphosphonic acid (ACEDP, H5L3), 1,3-diaminopropane-1,1,3,3-tetraphosphonicacid (DAPTP, H8L4), ethylenediamine-N,N′-bis(dimethylmethylene phosphonic)acid (EDBDMPO, H4L5), O-phenylenediamine-N,N′-bis(dimethyl methylene phosphonic)acid (PDBDMPO, H4L6), diethylene triamine-N,N,N′,N′,NN″-penta(methylene phosphonic)acid (DETAPMPO, H10L7) and diethylene triamine-N,N″-bis(dimethyl methylene phosphonic)acid (DETBDMPO, H4L8) have been synthesised and were characterised by elemental and thermal analyses as well as by IR, UV–VIS, EPR and magnetic measurements. The first stage in the thermal decomposition process of these complexes shows the presence of water of hydration, the second denotes the removal of the coordinated water molecules. After the loss of water molecules, the organic part starts decomposing. The final decomposition product has been found to be the respective MO·P2O5. The data of the investigated complexes suggest octahedral geometry with respect to Co(II) and Ni(II) and tetragonally distorted octahedral geometry with respect to Cu(II). Antiferromagnetism has been inferred from magnetic moment data. Infrared spectral studies have been carried out to determine coordination sites.  相似文献   

7.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

8.
Summary Stability constants of binary (ML, ML2) and ternary (MAL) complexes [M=CoII, NiII, CuII or ZnII; A=iminodiacetic acid (ida),N-methyliminodiacetic acid (Me-ida), anthranilatediacetic acid (ada), nitrilotriacetic acid (nta), 2,2-bipyridine (bipy), orthophenanthroline (o-phen); HL =acetohydroxamic acid] have been determined at 25°C at an ionic strength of 0.1M KNO3 by the Iriving Rossotti technique. In the case of aminopolycarboxylic acids as primary ligands, there is always a lowering of K MAL MA from K ML M and K 2 ML while in the case of heteroaromaticN-bases as primary ligands, the values of K MAL MA are very close to those of K ML M . In the ternary systems studied, the values of K MAL MA are in the sequence, K M(o-phen) M(o-phen) >K M(bipy)L M(bipy) K M(ida)L M(ida) >K M(Me-ida)L M(Me-ida) >K M(nta)L M(nta) >K M(ada)L M(ada) , while in the case of CuII, the values of M M(nta)L M(nta) and K M(ada)L M(ada) are drastically reduced compared to all other primary ligands. For aminopolycarboxylic acids, the sequence of K MAL MA is opposite to those of K MA M and K MAL M though in the sequence of K MA M , K MAL M and K MAL MA for A=ada and nta their relative positions are unaltered. The obtained results are explained in the light of different astatistical factors such as electrostatic effects, steric hindrance, change of effective positive charge on the central metal depending upon the -basic and -acidic character of the primary ligands.  相似文献   

9.
New cationic tetranuclear Co(II) and neutral binuclear Cu(II) complexes with tpmc (N,N,N″,N″′-tetrakis-(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) and bridging pyromellitate ligand pma (tetraanion 1,2,4,5-benzenetetracarboxylic acid) were isolated. The composition of the compounds is proposed based on elemental analyses (C, H, N, M=Cu, Co), molar conductivity determination, UV-Vis, FTIR, EPR, LC-MS and reflectance spectroscopy, magnetic measurements, cyclic voltammetry, as well as TG and DTA. It is proposed that in [Co4(pma)(tpmc)2](ClO4)4·6H2O (1), cobalt(II) is six-coordinate out of cyclam rings and one OCO? from pma participates in coordination with one Co(II). In the case of [Cu2(pma)tpmc]?8H2O (2), one OCO? from pma bridges two Cu(II). The cytotoxic activity of 1 and 2 was tested against tumor cell lines human cervix adenocarcinoma (HeLa), estrogen-receptor-positive human breast cancer (MCF-7), human myelogenous leukemia (K562), and the human Caucasian Burkitt’s lymphoma (Ramos). The IC50 values for 1 and 2 were within the range 44.66 ± 2.39 to 152.40 ± 2.28 μM, and from 140.88 ± 3.51 to 192.05 ± 2.09 μM, respectively. Both 1 and 2 were tested for antimicrobial activity. We determined that minimal inhibitory concentration for 1 against Staphylococcus aureus, Bacillus subtilis, and Klebsiella pneumoniae was 25 mM. Complex 2 did not express activity against tested microbial strains.  相似文献   

10.
Two novel linear trinuclear Schiff base complexes, [Ni{Ni(C17H14Br2N2O2)(NO3)(H2O)}2] · 2MeOH · 2H2O ( 1 ), and [Cd{Ni(C25H20N2O2)(CH3COO)}2] ( 2 ), were synthesized and characterized by elemental analyses, infrared spectroscopy, and X‐ray single crystal determinations. There are three bridges across the Ni‐M atom pairs (M is Ni for 1 , and Cd for 2 ) in each complex, involving two phenolate O atoms of a Schiff base ligand (N,N′‐bis(5‐bromosalicylidene)‐1,3‐propanediaminate (BSPD) for 1 and N,N′‐bis(2‐hydroxynaphthylmethenylimino)‐1,3‐propanediaminate (HNPD) for 2 ), and an O‐N‐O moiety of a μ‐nitrato group for 1 or an O‐C‐O moiety of a μ‐acetato group for 2 . In each of the complexes, the central M2+ is located on an inversion center and has an octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging nitrate or acetate group in the axial positions. The coordination around the terminal Ni2+ ions is also octahedral for 1 , but square pyramidal for 2 . The nitrate or acetate bridges linking the central and terminal metal ions are mutually trans. The Ni···M distances are 3.006(2) Å in 1 , and 3.175(2) Å in 2 .  相似文献   

11.
Three linear trinuclear Schiff base complexes, {Zn[Zn(CH3COO)(C17H16N2O2)]2} ( 1 ), {Zn[Zn(CH3COO)(C25H20N2O2)]2} ( 2 ), and {Cd[Cd(CH3COO)(C18H18N2O2)]2} ( 3 ), were synthesized for the first time under solvolthermal conditions. Their structures have been characterized by elemental analyses, X-ray single crystal determinations, and infrared spectroscopy. There are three bridges across the M-M atom pairs (M is Zn for 1 and 2 , or Cd for 3 ) in each complex, involving two O atoms of a Schiff base ligand (N,N′-bis(salicylidene)-1, 3-propanediaminate (SALPD2-) for 1 , N, N′-bis(2-hydroxy-naphthalmethenylimino)-1, 3-propanediaminate (NAPTPD2-) for 2 , and N,N′-bis-(salicylidene)-1,4-butanediaminate (SALBD2-) for 3 ), and an O-C-O moiety of a μ-acetato group. In each of the complexes, the central M2+ ion is located on an inversion center and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal M2+ ions is irregular square pyramidal, with two O atoms and two N atoms of the Schiff base ligand in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal M2+ ions are mutually trans. The M…M distances are 3.050(3) Å in 1 , 3.139(2) Å in 2 , and 3.287(6) Å in 3 .  相似文献   

12.
The tetradentate Schiff-base ligands, N,N′-bis(salicylidene)-ethylenediamine (Salen), N,N′-bis(salicylidene) butylenediamine (Salbut), and N,N′-bis(salicylidene)-o–phenylenediamine, (sal-o-phen) are very strongly sorbed by cation exchange resin (Dowex-50W) with Fe2+ ions as a counter ion, forming stable complexes. The kinetics of the catalytic decomposition of H2O2 using these complexes was studied in ethanolic medium. The reaction was first-order with salen and sal-o-phen and second-order with salbut with respect to [H2O2]. The rate of the H2O2 decomposition increased either from salen to salbut or from salen to sal-o-phen. Also, the k (per g dry resin) values decreased with increasing both the particle size and the degree of resin cross-linkage. The active species formed at the beginning of the reaction, had an inhibiting effect on the reaction rate. The corresponding activation parameters were calculated from a least-squares fit of the temperature dependence of the rate constant. A reaction mechanism is proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

14.
4,4′‐(p‐Phenylene)bipyridazine, C14H10N4, (I), and the coordination compounds catena‐poly[[dibromidocopper(II)]‐μ‐4,4′‐(p‐phenylene)bipyridazine‐κ2N2:N2′], [CuBr2(C14H10N4)]n, (II), and catena‐poly[[[tetrakis(μ‐acetato‐κ2O:O′)dicopper(II)]‐μ‐4,4′‐(p‐phenylene)bipyridazine‐κ2N1:N1′] chloroform disolvate], {[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3}n, (III), contain a new extended bitopic ligand. The combination of the p‐phenylene spacer and the electron‐deficient pyridazine rings precludes C—H...π interactions between the lengthy aromatic molecules, which could be suited for the synthesis of open‐framework coordination polymers. In (I), the molecules are situated across a center of inversion and display a set of very weak intermolecular C—H...N hydrogen bonds [3.399 (3) and 3.608 (2) Å]. In (II) and (III), the ligand molecules are situated across a center of inversion and act as N2,N2′‐bidentate [in (II)] and N1,N1′‐bidentate [in (III)] long‐distance bridges between the metal ions, leading to the formation of coordination chains [Cu—N = 2.005 (3) Å in (II) and 2.199 (2) Å in (III)]. In (II), the copper ion lies on a center of inversion and adopts CuN2Br4 (4+2)‐coordination involving two long axial Cu—Br bonds [3.2421 (4) Å]. In (III), the copper ion has a tetragonal pyramidal CuO4N environment. The uncoordinated pyridazine N atom and two acetate O atoms provide a multiple acceptor site for accommodation of a chloroform solvent molecule by trifurcated hydrogen bonding [C—H...O(N) = 3.298 (5)–3.541 (4) Å].  相似文献   

15.
trans -Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II): Synthesis, Properties, and Crystal Structure Dirheniumheptoxide reacts with phthalodinitrile in boiling 1-chloronaphthalene and subsequent reprecipitation of the green raw product from conc. sulfuric acid to yield an oxo-phthalocyaninate of rhenium, which is reduced by molten triphenylphosphine forming dark green trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), trans[Re(PPh3)2pc2–]. The latter crystallizes triclinic in the space group P 1 with the cell parameters as follows: a = 11.512(2) Å, b = 12.795(2) Å, c = 12.858(2) Å, α = 64.42(2)°, β = 79.45(2)°, γ = 72.74(1)°; V = 1628.1(5); Z = 1. Re is in the centre of the (Np)4 plane (Np: N1, N3) and coordinates two triphenylphosphine ligands axially in trans position. The average Re–Np and Re–P distances are 2.007(1) and 2.516(3) Å, respectively. Despite the many extra bands the typical B, Q and N regions of the pc2– ligand are observed at ca. 16500, 28900/32900 and 35300 cm–1. A weak band group at ca. 8900 cm–1 is attributed to a trip-multiplet transition, another one at ca. 14500 cm–1 to a P → Re charge transfer. The vibrational spectra are dominated by internal vibrations of the pc2– ligand. The very weak intensity of the IR bands at 905 and 1327 cm–1 are diagnostic of the presence of ReII.  相似文献   

16.
Some new carbamates, viz. M(MorphcbmH)2X2 (MorphcbmH = morpholinecarbamic acid, M = Cu, X = Cl, ClO4,NO3; M = Zn, X = Cl, ClO4, NO3, CH3COO and X2 = SO4), have been synthesized and investigated. Compounds were characterized by elemental analysis, molar conductance, FT infrared, fluorescence, NMR (1H and 13C) and solution electronic absorption spectral studies. Room temperature field-dependent magnetic susceptibility measurements, PXRD spectral and cyclic voltametric studies were also conducted. Chelating bidentate mode of coordination of ligand, MorphcbmH with four coordination around metal ion has been proposed. Ligand and its compounds have also been studied using non-isothermal thermogravimetric analysis and differential scanning calorimetric analytical techniques which inferred formation of metal oxide/MCO3 as final thermal decomposition products. Compounds were screened against the lipase enzyme for assaying their enzyme activity and were found to retard the lipase activity from 48.16 to 0.044 µmol mL?1 min?1.  相似文献   

17.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

18.
Summary Stability constants of binary (ML, ML2) and ternary (MAL) complexes, where M=CoII, NiII, CuII or ZnII; A=iminodiacetic acid (ida), N-methyliminodiacetic acid (mida), anthranilatediacetic acid (ada), nitrilotriacetic acid (nta), 2,2-bipyridine (bipy) andortho-phenanthroline (phen); LH=benzohydroxamic acid, have been determined at 25°C and an ionic strength of 0.1 M KNO3 by the Irving-Rossotti technique. The results are explained on the basis of astatistical factors; electrostatic effects, steric hindrance, change of electronegativity of the contral metal depending upon the -basic and -acidic character of the primary ligands and also stereochemical factors.  相似文献   

19.
Three new complexes (13) have been synthesized and characterized by X-ray single crystal determination and evaluated for inhibitory activity on jack bean urease. All the complexes contained a new cinnamic acid derivative as the ligand (C11H12O4), (E)-3-(3,4-dimethoxyphenyl)acrylic acid, and crystallized in monoclinic C2/c space group. Complex 1 (C11H11O4)4(C3N2H8)2Cu2 (C3N2H8?=?1,2-diaminopropane) was obtained with a?=?20.488(2), b?=?19.596(2), c?=?15.2500(13), β?=?93.502(2)°, V?=?6111.2(10)?Å3, Z?=?4, R 1 ?=?0.0616, and wR 2 ?=?0.2059. Complex 2 (C11H11O4)4(C3N2H8)2Cu2 (C3N2H8=1,3-diaminopropane) was obtained with a?=?20.2494(12), b?=?19.5732(12), c?=?14.8940(8), β?=?96.884(2)°, V?=?5860.6(6)?Å3, Z?=?4, R 1 ?=?0.0409, and wR 2 ?=?0.1107. Complex 3 (C11H11O4)2(C2N2H6)2Ni2·H2O (C2N2H6?=?ethylenediamine) was obtained with a?=?28.359(2), b?=?6.5422(5), c?=?16.8587(14), β?=?101.359(2)°, V?=?3066.5(4)?Å3, Z?=?4, R 1 ?=?0.0422, and wR 2 ?=?0.1190. It was found that copper(II) complexes 1 [IC50?=?4.71?μM] and 2 [IC50?=?3.15?μM] showed strong inhibitory activity against jack bean urease compared with acetohydroxamic acid [IC50?=?10.01?μM] as a positive reference. Unfortunately, 3 exhibited no inhibitory activity.  相似文献   

20.
Summary When platinum(II) chloride dissolved in acetic acid containing concentrated hydrochloric acid was refluxed withN-phenylpyrazole(liphpz) andN-(p-tolyl)pyrazole (Htlpz), complexes of composition [Pt(N-C)Cl]2 (N-C = phpz, tlpz) were obtained, in which phpz and tlpz are coordinated through nitrogen and carbon forming a five membered metallocycle. Similar palladium(II) complexes [Pd(N-C)Cl]2 were easily prepared by the reaction of palladium(II) chloride with Hphpz and Htlpz in methanol in the presence of lithium chloride. These [M(N-C)CI]2 complexes reacted with tri-n-butylphosphine (PBu3) and pyridine (py) to give the adducts [M(N-C)ClL](L = PBu3, py). Ethylenediamine(en) and acetylacetone(Hacac) gave IPd(phpz)(en)]Cl and [Pd(phpz)(acac)] respectively. These new complexes are characterized by means of1H-n.m.r. and i.r. spectra, and probable structures are proposed.Reprints of this article are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号