首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal conductivity and thermal expansivity of a thermotropic liquid crystalline copolyesteramide with draw ratio λ from 1.3 to 15 have been measured parallel and perpendicular to the draw direction from 120 to 430 K. The sharp rise in the axial thermal conductivity Kpar; and the drastic drop in the axial expansivity α at low λ, and the saturation of these two quantities at λ > 4 arise from the corresponding increase in the degree of chain orientation revealed by wide-angle x-ray diffraction. In the transverse direction, the thermal conductivity and expansivity exhibit the opposite trends but the changes are relatively small. The draw ratio dependences of the thermal conductivity and expansivity agree reasonably with the predictions of the aggregate model. At high orientation, Kpar; of the copolyesteramide is slightly higher than that of polypropylene but one order of magnitude lower than that of polyethylene. In common with other highly oriented polymers such as the lyotropic liquid crystalline polymer, Kevlar 49, and flexible chain polymer, polyethylene, αpar; of the copolyesteramide is negative, with a room temperature value differing from those of Kevlar 49 and polyethylene by less than 50%. Both the axial and transverse expansivity show transitions at about 390 and 270 K, which are associated with large-scale segmental motions of the chains and local motions of the naphthalene units, respectively. ©1995 John Wiley & Sons, Inc.  相似文献   

2.
Luminescent liquid crystalline polymers consisting of Iridium attached to polysiloxanes are prepared. 4-Cyanophenyl 4-(allyloxy) benzoate (M1) and an Iridium complex (Ir-M2) grafted to poly(methylhydrogeno)siloxane are used for the preparation of the Iridium-containing liquid crystalline polymers. The chemical structures are characterised by Fourier transform infrared spectroscopy and 1H NMR. The mesomorphic properties and phase behaviour are investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy and X-ray diffraction. The polymers containing <1.2 mol% of the Iridium ions reveal reversible mesomorphic phase transition, wide mesophase temperature ranges and high thermal stability. The introduction of the Iridium ions does not change the liquid crystalline state of polymer systems; on the contrary, the polymers are enabled with the luminescent properties. With the Iridium ion contents ranging between 0.3 and 1.2 mol%, luminescent intensity of polymers gradually increased. The temperature dependence of luminescent intensity was studied in the liquid crystalline phase.  相似文献   

3.
《Liquid crystals》2012,39(12):1827-1842
ABSTRACT

It is a challenge to tailor the phase behavior and phase structure of side-chain liquid crystalline polymers carrying targeted ordered structures and functional properties. In this work, liquid crystalline (LC) properties of cholesterol side-chain polymers without spacer were controlled by molecular weight (Mn) and copolymerization. On the one hand, two series of homopolymers without the spacer, poly (methacrylic acid) cholesterol esters (PCholMCn) and poly (acrylic acid) cholesterol esters (PCholACn) with different Mn and low polydispersity, were achieved by reversible addition-fragmentation chain transfer polymerization. The experiment results indicated that the Mn had little effect on the LC properties of PCholMCn and all homopolymers formed the smectic A phase. However, the phase structures of PCholAC were found to be strongly Mn dependent. The polymers PCholACn were amorphous when the Mn was lower than a critical value of approximately 12103 g/mol. But when the Mn exceeded the critical value, the polymers exhibited smectic A phase. On the other hand, two kinds of random copolymers, poly(cholest-5-en-3-methacrylate)-co-polymethyl acrylate (PCholMC-co-MA) and poly(cholest-5-en-3-acrylate)-co-polymethyl acrylate (PCholAC-co-MA) were synthesized with various composition. The findings suggested that the steric effect of main-chain and the interaction of mesogens would promote the formation of LC phase.  相似文献   

4.
Two series of novel liquid crystalline photo-crosslinkable bis(vanillylidene-azobenzene) cycloalkanone containing polymers, namely poly(vanillylidene alkyloxy-4,4'-azobenzenedicarboxylic ester)s, have been synthesised from bis[m-hydroxyalkyloxy(vanillylidene)cycloalkanone] (m = 6, 8, 10) with azobenzene dicarbonylchloride by solution polycondensation method at ambient temperature. Polymers with varying spacer lengths have been synthesised and characterised by spectroscopic techniques. These variations have been correlated with the thermal properties and transition temperatures. Thermal transitions were analysed by differential scanning calorimetry (DSC) and the mesophases were identified by hot stage optical polarised microscopy (HOPM). All of the polymers were found to exhibit liquid crystalline properties. Transition temperatures were observed to decrease with increasing spacer length. The thermogravimetric analysis reveals that all of the polymers were stable up to 280°C undergo two-stage decomposition. Using the UV-visible photolysis studies we investigated the simultaneous behaviour of reactivity rates of crosslinking in the vanillylidene unit and isomerisation caused by the azobenzene unit in the photo-crosslinkable main chain liquid crystalline polymers. The photolysis of liquid crystalline bis(vanillylidene)cycloalkanone-based polymers reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerisation of azobenzene unit and 2p+2p addition by vanillylidene units. The EZ photoisomerisation in the liquid crystal phase disrupts the parallel stacking of the mesogens, resulting in the transition from the liquid crystal phase to isotropic phase. The photoreaction involving 2p+2p addition of the bis(vanillylidene)cycloalkanone units in the polymers results in the conjoining of the chains. The cyclopentanone polymers exhibited a faster rate of photolysis than the cyclohexanone polymers.  相似文献   

5.
Thermotropic liquid crystalline (TLC) polymers with low melt transitions are useful for imaging technologies. This is the first report describing thermotropic liquid crystalline copolyesters of low melt transitions comprised of a mesogen with up to three different spacer moieties. We have noted that the smectic mesophase range decreased with increasing amounts of different spacer moieties, without altering the isotropic transition and thereby leading to a broader nematic range. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Results of studies dealing with an effect of polymers (selected kinds) and plasticizer on thermal stability of coal-tar pitch were presented. Factors being decisive in miscibility of composition constituents and instability of bitumen-polymer-plasyticizer mixtures were determined.  相似文献   

7.
New class of photo and electrically switchable azobenzene containing pendant bent‐core liquid crystalline monomers ( AZBM 1, 2 , and 3 ) and their polymers ( AZBP 1, 2 , and 3 ) are reported. The synthesized precursors, monomers, and polymers were characterized by FT‐IR, 1H, and 13C NMR spectroscopy. Thermal stability of polymers was examined by thermogravimetric analysis and revealed stable up to 260 °C. The mesophase transition of monomers and polymers are observed through polarized optical microscopy (POM) and further confirmed by differential scanning calorimetry (DSC). The electrically switching property of monomers and their polymers were studied by electro‐optical method. Among the three monomers AZBM 1, 2 , and 3 , AZBM 1 and 2 exhibit antiferroelectric (AF) switching and AZBM 3 exhibits ferroelectric (F) switching behavior. On the other hand, low molecular weight polymers ( AZMP 1, 2 , and 3 ) show weak AF and F switching behavior. The photo‐switching properties of bent‐core azo polymers are investigated using UV‐vis spectroscopy, trans to cis isomerization occurs around 25 s for AZBP‐1 and 30 s for AZBP‐2 and 3 in chloroform, whereas reverse processes take place around 80 and 90 s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
We report herein studies on the liquid crystalline behavior of a series of supramolecular materials that contain different ratios of two complementary symmetrically-substituted alkoxy-bis(phenylethynyl)benzene AA- and BB-type monomers. One monomer has thymine units placed at either end of the rigid mesogenic core, while the other has N6-(4-methoxybenzoyl)-adenine units placed on the ends. Differential scanning calorimetric and polarized optical microscopy studies have been carried out on these systems. These studies show that the material's behavior is strongly dependent on its thermal history. As a result, the materials can exhibit, on heating, either a liquid crystalline phase, a crystalline phase, or the coexistence of crystalline and liquid crystalline regions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5049–5059, 2006  相似文献   

9.
This investigation extends our previous investigations of liquid crystalline polyurethanes prepared from 4,4′-bis(2-hydroxyethoxy)biphenyl (BHBP), 2,4-tolylene diisocyanate, and poly(oxytetramethylene)diols as the flexible spacers. The influence of molecular weight of investigated polyurethanes on their properties is discussed for two series with the same content of BHBP and different lengths of flexible spacers. The polyurethanes were investigated by means of DSC, polarizing microscopy, x-ray diffractometry, and IR spectroscopy. The molecular weight distribution was determined by GPC. Morphology was studied by the SALS method. The molecular weight of polyurethanes and the length of flexible spacer influence the phase transition temperature and the range of mesophase occurrence. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
11.
In this contribution, we for the first time propose the targeted synthesis of Co‐metalated salen‐based crystalline polymer, starting from corner and square building units in the presence of cobalt metal ions. On the basis of structural characterizations, this kind of salen‐based crystalline polymer is proved to be the long hollow tube. Due to its covalent connected unique structure, the obtained Co‐salen polymer possesses high crystallinity and excellent stability. The experimental and theoretical studies show that this kind of material holds paramagnetism, unique electronic structure, and remarkable catalytic activity with high selectivity for the coupling of CO2 and epoxides to form cyclic carbonates. And specifically, it shows favorable recyclability with only a slight drop in yield after six catalytic cycles. We hope that the results reported here will greatly inspire the design and synthesis of different metalated salen‐based polymer and enlarge their interesting applications in the future. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 641–647  相似文献   

12.
When the flexible terminal substituent changes from butoxy to hexyloxy or longer, smectic C (SC) liquid crystalline phase was firstly reported to develop from a kind of mesogen‐jacketed liquid crystalline polymer (MJLCP) whose mesogenic side groups are unbalancedly bonded to the main chain without spacers. A series of MJLCPs, poly[4,4′‐bis(4‐alkoxyphenyl)‐2‐vinylbiphenyl(carboxide)] (nC2Vp, n is the number of the carbons in the alkoxy groups, n = 2, 4, 6, 8, 10, and 12) were designed and synthesized successfully via free radical polymerization. The molecular weights of the polymers were characterized with gel permeation chromatography, and the liquid crystalline properties were investigated by differential scanning calorimetry, polarized light microscopy experiments, and 1D, 2D wide‐angle X‐ray diffraction. Comparing with the butoxy analog, the polymer with unbalanced mesogenic core and shorter flexible substituents (n = 2, 4) keeps the same smectic A (SA) phase, but other polymers with longer terminal flexible substituents (n = 6, 8, 10, and 12) can develop into a well‐defined SC phase instead of SA phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 505–514, 2009  相似文献   

13.
The synthesis of a series of azobenzene containing liquid crystalline methacrylic homopolymers, poly(4-ω-methacryloyloxy-hexyloxy-4′-ethoxyazobenzene) [Poly(M6A)], with distinct average chain lengths and low polydispersity has been achieved by Atom Transfer Radical Polymerization (ATRP) in THF solution using allyl 2-bromoisobutyrate as initiator and Cu(I)Br as catalyst. Under the adopted conditions the living centers concentration is found to be constant throughout the polymerization process and well defined chain end-groups are obtained. All the obtained polymeric samples, having average molecular mass ranging from 3300 to 14000 g/mol, exhibit smectic and nematic liquid-crystalline phases on heating, with transition temperatures strongly dependent on polymerization degree, as characterized by differential scanning calorimetry and polarized optical microscopy.The photomechanical effects (i.e. the dependence of volume and density) exhibited upon trans-to-cis and cis-to-trans photoisomerization of the azobenzene mesogenic groups have been investigated by ellipsometry and related to molecular weight, with particular attention to important parameters for potential applications such as the relative variation of total volume, response time, stability and reproducibility.  相似文献   

14.
In situ measurement techniques suitable for determination of the coefficient of thermal expansion (CTE) in thin, spin‐cast polymer films in both the in‐plane and through‐plane directions are presented. An examination of the thermal expansion behavior of cyclotene thin films has been performed. In particular, the effect of film thickness on the in‐plane and through‐plane CTE and in‐plane Young's modulus of spin‐coated cyclotene films was examined. It is shown that the mechanical response of in situ cyclotene films can be adequately described by isotropic film properties. It was also demonstrated that there is no thickness dependence on the free‐standing mechanical properties or on the resulting through‐plane thermal strain in an in situ film. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 311–321, 1999  相似文献   

15.
New side‐chain liquid‐crystalline polymers containing both cholesteric and thermochromic side groups were synthesized. Their chemical structures were confirmed with elemental analyses and Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties and phase behavior were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The effect of the concentration of dye side groups on the phase behavior of the polymers was examined. The polymers showed smectic or cholesteric phases. Those polymers containing less than 20 mol % dye groups had good solubility, reversible phase transitions, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the isotropization temperature and mesophase temperature ranges decreased with an increasing concentration of dye groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3870–3878, 2004  相似文献   

16.
Up to now thermotropic liquid crystalline side chain polymers have been seldom used as stationary phases in high-performance liquid chromatography (HPLC). The preparation of a new class of surface modified silica gels is reported. They are obtained by coating on the silica support liquid crystalline polysiloxanes with mesogenic side groups laterally attached to the polymer backbone through a flexible spacer. Their chromatographic behavior in reversed-phase HPLC is described for the separation of polycyclic aromatic hydrocarbons. The results show excellent planarity and rod shape recognition capabilities. Comparisons with low-molecular-mass liquid crystalline-bonded silica and longitudinally attached liquid crystalline polymer-coated stationary phase are also reported. Finally, comparisons to commercially available C18 phases are described for the separation of complex mixtures.  相似文献   

17.
Phase transition process of PEOm-b-PMA(Az)n was investigated by the simultaneous DSC-XRD measurement using the synchrotron radiation facility. Four endothermic DSC peaks were observed during heating process. These DSC peaks were assigned to the melting of PEO, the transition from SmX, which is a mixture of super-cooled SmC and crystal, to SmC, from SmC to SmA, and from SmA to isotropic liquid state as determined by XRD profiles. In SmC phase, the liner expansion coefficient calculated from the spacing variation of the smectic layer distance was larger than that of the other phases. This result reflected the fact azobenzene moieties in the long-side chains of PMA(Az)n forming the smectic layers and then they were tilted and stood up during the heating process.  相似文献   

18.
The thermal conductivity of polyolefins and halogen-substituted polymers was studied in a broad temperature interval spanning both solid and melt states, in the range of pressures from 0.1 up to 100 MPa with the aid of a high-pressure-calorimeter in the continuous heating regime. Treatment of data on the pressure dependence of the thermal conductivity of melts in terms of Barker's equation yielded the values of quasilattice Grueneisen parameter B which exhibited the same dependence on molecular structure of a polymer as the parameter 3C/p from the Simha-Somcynsky equation of state (number of external degress of freedom per chain repeat unit). Analysis of the dependence of the thermal conductivity of polyethylene on the degree of crystallinity revealed the inadequacy of the current two-phase model which does not account for the microheterogeneity of the amorphous phase. It was concluded that interchain heat transfer makes the dominant contribution to the thermal conductivity of polymers both in amorphous and in crystalline states.
Zusammenfassung Mit Hilfe eines Hochdruck-- Kalorimeters mit kontinuierlicher Aufheizung wurde im Druckintervall 0,1 bis 100 MPa und in einem breiten Temperaturbereich, in den sowohl feste als auch flüssige Zustände gehören, die Wärmeleitfähigkeit von Polyolefinen und halogenierten Polymeren untersucht. Drückt man die Druckabhängigkeit der Wärmeleitfähigkeit der Schmelzen mit Hilfe der Barkerschen Gleichung aus, erhält man die Werte für den Quasigitter Grueneisen-Parameterb, der die gleiche Abhängigkeit von der Molekular-struktur eines Polymers zeigt, wie der Parameter 3C/p aus der Gleichung von Simha-Somcynsky (Zahl der externen Freiheitsgrade geteilt durch Kettenstruktureinheit). Eine Untersuchung der Abhängigkeit der Wärmeleitfähigkeit von Polyethylen von Kristallinitäts-grad zeigt die Mängel dieses Zwei-Phasen-Modelles, was die Mikroheterogenität der amorph-en Phase nicht erklärt. Man zog die Schlußfolgerung, daß ein Wärmetransport zwischen den Ketten sowohl im amorphen als auch im kristallinen Zustand den entscheidenden Beitrag zur Wärmeleitfähigkeit von Polymeren liefert.
  相似文献   

19.
The anisotropy of the thermal expansion of polyimide films was investigated . Out-of-plane or thickness direction coefficients of linear thermal expansion (CTE) were calculated from the difference between the coefficient of volumetric expansion (CVE) and the sum of the in-plane or film direction coefficients of linear thermal expansion for commercial and spin-coated PMDA//ODA and BPDA//PPD films and spin coated BTDA//ODA/MPD films. The CVEs were obtained from a pressure-volume-temperature (PVT) technique based on Bridgeman bellows. The CVE was shown to be essentially constant, independent of molecular orientation and thickness. A decrease in the in-plane CTEs therefore occurs at the expense of an increase in the out-of-plane CTE. In all cases the calculated out-of-plane CTE was higher than the measured in-plane CTE. The ratio of the out-of-plane CTE to the in-plane CTE was 1.2, 3.8, and 49.3 for the spin-coated BTDA//ODA/MPD, PMDA//ODA, and BPDA//PPD films, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
This work is a continuation of our earlier investigations of liquid crystalline polyurethanes prepared from 4,4′-bis(2-hydroxyethoxy) biphenyl (BHBP), 2,4-tolylene diisocyanate (TDI), and poly (oxytetramethylene) diols (PTMO). The annealing effects on the thermal properties of the investigation polyurethanes are presented for three samples with the same BHBP content, different flexible spacer length, and different molecular weight of the polyurethanes. The annealed polyurethanes were investigated by means of DSC, and polarizing microscopy. The results of the thermal analysis show that the temperatures of phase transitions depend on the annealing temperature and time. These dependences are different for different molecular weights. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号