首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Steady shear viscosity and ionic conductivity have been measured for nine commercial diglycidyl ether of bisphenol-A (DGEBA) epoxy resins with molecular weights ranging from 340 to 14,200. The temperature dependence of viscosity and ionic conductivity was modeled using free volume viscosity and ionic conductivity relationships, which correlate the fractional free volume required for polymer chain segment motion (B) and the fractional free volume required for ion motion (B′) with polymer structure. The fractional free volume required for polymer chain segment mobility was observed to increase systematically with the molecular weight of the resins. The fractional free volume required for ion mobility did not vary for the resin series. A stoichiometric mixture of a low molecular weight DGEBA resin and a 4,4′-diaminodiphenyl sulfone cross-linker was partially polymerized to extents of reaction ranging from 0% to 49%. The fractional free volume required for polymer segment mobility for these partially polymerized samples was consistent with results for the neat resins. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Dynamic viscosity and ionic conductivity were measured simultaneously during the cure of a digylcidyl ether of bisphenol-A (DGEBA) epoxy resin with diamino-diphenyl sulfone (DDS) by mounting a microdielectric sensor into the plates of a rheometer. Two different cure temperatures were examined. Periodically, throughout the cure, samples were removed from the plates of the rheometer, quenched, and analyzed for the glass transition temperature and epoxide conversion. The relationship between conductivity and viscosity appeared to be independent of cure temperature. A linear relation with a slope of ?1 was observed between the natural logarithms of conductivity and viscosity during the cure up to approximately 85% cure conversion. It was hypothesized that the reaction rate was hindered by diffusion at this stage in the polymerization. A free volume relationship was used to successfully correlate conductivity with viscosity up to the diffusion limited region. ©1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号