首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rate coefficients for the reactions of OH with ethane (k1), propane (k2), n-butane (k3), iso-butane (k4), and n-pentane (k5) have been measured over the temperature range 212–380 K using the pulsed photolysis-laser induced fluorescence (PP-LIF) technique. The 298 K values are (2.43±0.20) × 10?13, (1.11 ± 0.08) × 10?12, (2.46 ± 0.15) × 10?12, (2.06 ± 0.14) × 10?12, and (4.10 ± 0.26) × 10?12 cm3 molecule?1 s?1 for k1, k2, k3, k4, and k5, respectively. The temperature dependence of k1 and k2 can be expressed in the Arrhenius form: k1 = (1.03 ± 0.07) × 10?11 exp[?(1110 ± 40)/T] and k2 = (1.01 ± 0.08) × 10?11 exp[?(660 ± 50)/T]. The Arrhenius plots for k3k5 were clearly curved and they were fit to three parameter expressions: k3 = (2.04 ± 0.05) × 10?17 T2 exp[(85 ± 10)/T] k4 = (9.32 ± 0.26) × 10?18 T2 exp[(275 ± 20)/T]; and k5 = (3.13 ± 0.25) × 10?17 T2 exp[(115 ± 30)/T]. The units of all rate constants are cm3 molecule?1 s?1 and the quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The present measurements are in excellent agreement with previous studies and the best values for atmospheric calculations are recommended. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The kinetics of OH reactions with furan (k1), thiophene (k2), and tetrahydrothiophene (k3), have been investigated over the temperature range 254–425 K. OH radicals were produced by flash photolysis of water vapor at λ > 165 nm and detected by timeresolved resonance fluorescence spectroscopy. The following Arrhenius expressions adequately describe the measured rate constants as a function of temperature (units are cm3 molecule?1 S?1): k1 = (1.33 ± 0.29) × 10?11 exp[(333 ± 67)/T], k2 = (3.20 ± 0.70) × 10?12 exp[(325 ± 71)/T], k3 = (1.13 ± 0.35) × 10?11 exp[(166 ± 97)/T]. The results are compared with previous investigations and their implications regarding reaction mechanisms and atmospheric residence times are discussed.  相似文献   

3.
Rate constants for the reactions of OH and NO3 radicals with CH2?CHF (k1 and k4), CH2?CF2 (k2 and k5), and CHF?CF2 (k3 and k6) were determined by means of a relative rate method. The rate constants for OH radical reactions at 253–328 K were k1 = (1.20 ± 0.37) × 10?12 exp[(410 ± 90)/T], k2 = (1.51 ± 0.37) × 10?12 exp[(190 ± 70)/T], and k3 = (2.53 ± 0.60) × 10?12 exp[(340 ± 70)/T] cm3 molecule?1 s?1. The rate constants for NO3 radical reactions at 298 K were k4 = (1.78 ± 0.12) × 10?16 (CH2?CHF), k5 = (1.23 ± 0.02) × 10?16 (CH2?CF2), and k6 = (1.86 ± 0.09) × 10?16 (CHF?CF2) cm3 molecule?1 s?1. The rate constants for O3 reactions with CH2?CHF (k7), CH2?CF2 (k8), and CHF?CF2 (k9) were determined by means of an absolute rate method: k7 = (1.52 ± 0.22) × 10?15 exp[?(2280 ± 40)/T], k8 = (4.91 ± 2.30) × 10?16 exp[?(3360 ± 130)/T], and k9 = (5.70 ± 4.04) × 10?16 exp[?(2580 ± 200)/T] cm3 molecule?1 s?1 at 236–308 K. The errors reported are ±2 standard deviations and represent precision only. The tropospheric lifetimes of CH2?CHF, CH2?CF2, and CHF?CF2 with respect to reaction with OH radicals, NO3 radicals, and O3 were calculated to be 2.3, 4.4, and 1.6 days, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 619–628, 2010  相似文献   

4.
The temperature dependence of the rate coefficients for the OH radical reactions with toluene, benzene, o-cresol, m-cresol, p-cresol, phenol, and benzaldehyde were measured by the competitive technique under simulated atmospheric conditions over the temperature range 258–373 K. The relative rate coefficients obtained were placed on an absolute basis using evaluated rate coefficients for the corresponding reference compounds. Based on the rate coefficient k(OH + 2,3-dimethylbutane) = 6.2 × 10?12 cm3 molecule?1s?1, independent of temperature, the rate coefficient for toluene kOH = 0.79 × 10?12 exp[(614 ± 114)/T] cm3 molecule?1 s?1 over the temperature range 284–363 K was determined. The following rate coefficients in units of cm3 molecule?1 s?1 were determined relative to the rate coefficient k(OH + 1,3-butadiene) = 1.48 × 10?11 exp(448/T) cm3 molecule?1 s?1: o-cresol; kOH = 9.8 × 10?13 exp[(1166 ± 248)/T]; 301–373 K; p-cresol; kOH = 2.21 × 10?12 exp[(943 ± 449)/T]; 301–373 K; and phenol, kOH = 3.7 × 10?13 exp[(1267 ± 233)/T]; 301–373 K. The rate coefficient for benzaldehyde kOH = 5.32 × 10?12 exp[(243 ± 85)/T], 294–343 K was determined relative to the rate coefficient k(OH + diethyl ether) = 7.3 × 10?12 exp(158/T) cm3 molecule?1 s?1. The data have been compared to the available literature data and where possible evaluated rate coefficients have been deduced or updated. Using the evaluated rate coefficient k(OH + toluene) = 1.59 × 10?12 exp[(396 ± 105)/T] cm3 molecule?1 s?1, 213–363 K, the following rate coefficient for benzene has been determined kOH = 2.58 × 10?12 exp[(?231 ± 84)/T] cm3 molecule?1 s?1 over the temperature range 274–363 K and the rate coefficent for m-cresol, kOH = 5.17 × 10?12 exp[(686 ± 231)/T] cm3 molecule?1 s?1, 299–373 K was determined relative to the evaluated rate coefficient k(OH + o-cresol) = 2.1 × 10?12 exp[(881 ± 356)/T] cm3 molecule?1 s?1. The tropospheric lifetimes of the aromatic compounds studied were calculated relative to that for 1,1,1-triclorethane = 6.3 years at 277 K. The lifetimes range from 6 h for m-cresol to 15.5 days for benzene. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Far-infrared rotational transitions in ClO(X23/2, υ = 0) have been observed using laser magnetic resonance (LMR) with an optically pumped spectrometer. Five observed transitions at wavelengths between 444 and 713 µm have been compared with values predicted with spectroscopic constants from the literature. LMR detection of ClO has been used to study its reactions with NO and NO2 in a discharge flow system under pseudo-first-order conditions for ClO. The measured rate constants are k(ClO + NO) = (7.1 ± 1.4) × 10?12 exp[(270 ± 50)/T] cm3/molec·s for the temperature range of 202 < T < 393 K; k(ClO + NO2 + M) = (2.8 ± 0.6) × 10?33 exp[(1090 ± 80)/T] cm6/molec2·s (M = He, 250 < T < 387 K), (3.5 ± 0.6) × 10?33 exp[(1180 ± 80)/T] (M = O2, 250 < T < 416 K), and (2.09 ± 0.3) × 10?31 (M = N2, T = 297 K). All measurements were made at low pressures, between 0.6 and 6.6 torr. These results are compared with those from other studies.  相似文献   

6.
The rate constants and activation energies for the reactions of some thiophenes with the NO3 radical were measured using the absolute fast‐flow discharge technique at 263–335 K and low pressure. The proposed Arrhenius expressions for 2‐ethylthiophene, 2‐propylthiophene, 2,5‐dimethylthiophene, and 2‐chlorothiophene are k = (4.2 ± 0.28) ×10?16 exp[(2280 ± 70)]/T, k = (7.0 ± 2) × 10?18 exp[(3530 ± 70)]/T, k = (1 ± 1) × 10?14 exp[(1648 ± 240)]/T, and k = (8 ± 2) × 10?17 exp[(2000 ± 200)]/T (k = cm3 molecule?1 s?1), respectively. The reactions of this radical with 2‐chlorothiophene and 3‐chlorothiophene were also studied by a relative method in a Teflon static reactor at room temperature and atmospheric pressure. The effect of substitution on thiophene reactivity is discussed, and a relationship between the rate constants and the ionization potential (IP = ?EHOMO) has been proposed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 570–576, 2006  相似文献   

7.
Absolute rate constants for the reactions of OH radicals with butyl ethyl ether (k1), methyl tert-butyl ether (k2), ethyl tert-butyl ether (k3) tert-amyl methyl ether (k4) and tert-butyl alcohol (k5) have been measured over the temperature range 230–372 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. The temperature dependence of k1k5 when expressed in Arrhenius form gave: k1 = (6.59 ± 0.66) × 10 −12 exp|(362 ± 60)/T|, k2 = (5.03 ± 0.27) × 10−12 exp|&minus(133 ± 30)/T|, k3 = (4.40 ± 0.24) × 10−12 exp|(210 ± 37)/T|,k4 = (4.7 ± 0.7) × 10−12 exp|(82 ± 85)/T|, and k5 = (2.66 ± 0.48) × 10−12 exp| −(270 ± 130)/T|. However, the Arrhenius plots for k1k5, were slightly curved and are best fitted by the three parameter fits which are given in the article. The room temperature values of k1, k2, k3, k4, and k5 are (2.08 ± 0.23) × 10−11, (3.13 ± 0.36) × 10−12, (8.80 ± 0.50) × 10−12, (6.28 ± 0.45) × 10−12, and (1.08 ± 0.10) × 10−12, respectively, in cm3 molecule−1 s−1. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Laser flash photolysis combined with competition kinetics with SCN? as the reference substance has been used to determine the rate constants of OH radicals with three fluorinated and three chlorinated ethanols in water as a function of temperature. The following Arrhenius expressions have been obtained for the reactions of OH radicals with (1) 2‐fluoroethanol, k1(T) = (5.7 ± 0.8) × 1011 exp((?2047 ± 1202)/T) M?1 s?1, (2) 2,2‐difluoroethanol, k2(T) = (4.5 ± 0.5) × 109 exp((?855 ± 796)/T) M?1 s?1, (3) 2,2,2‐trifluoroethanol, k3(T) = (2.0 ± 0.1) × 1011 exp((?2400 ± 790)/T) M?1 s?1, (4) 2‐chloroethanol, k4(T) = (3.0 ± 0.2) × 1010 exp((?1067 ± 440)/T) M?1 s?1, (5) 2, 2‐dichloroethanol, k5(T) = (2.1 ± 0.2) × 1010 exp((?1179 ± 517)/T) M?1 s?1, and (6) 2,2,2‐trichloroethanol, k6(T) = (1.6 ± 0.1) × 1010 exp((?1237 ± 550)/T) M?1 s?1. All experiments were carried out at temperatures between 288 and 328 K and at pH = 5.5–6.5. This set of compounds has been chosen for a detailed study because of their possible environmental impact as alternatives to chlorofluorocarbon and hydrogen‐containing chlorofluorocarbon compounds in the case of the fluorinated alcohols and due to the demonstrated toxicity when chlorinated alcohols are considered. The observed rate constants and derived activation energies of the reactions are correlated with the corresponding bond dissociation energy (BDE) and ionization potential (IP), where the BDEs and IPs of the chlorinated ethanols have been calculated using quantum mechanical calculations. The errors stated in this study are statistical errors for a confidence interval of 95%. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 174–188, 2008  相似文献   

9.
Absolute rate coefficients for the reactions of the hydroxyl radical with dimethyl ether (k1) and diethyl ether (k2) were measured over the temperature range 295–442 K. The rate coefficient data, in the units cm3 molecule?1 s?1, were fitted to the Arrhenius equations k1 (T) = (1.04 ± 0.10) × 10?11 exp[?(739 ± 67 cal mol?1)/RT] and k2(T) = (9.13 ± 0.35) × 10?12 exp[+(228 ± 27 kcal mol?1)/RT], respectively, in which the stated error limits are 2σ values. Our results are compared with those of previous studies of hydrogen-atom abstraction from saturated hydrocarbons by OH. Correlations between measured reaction-rate coefficients and C? H bond-dissociation energies are discussed.  相似文献   

10.
Time-resolved resonance fluorescence detection of atomic chlorine following 266-nm laser flash photolysis of Cl2CO/RSR'/N2 mixtures has been employed to study the kinetics of Cl reactions with H2S(k1), CH3SH(k2), D2S(k3), and CD3SD(k4) as a function of temperature (193–431 K) and pressure (25–600 torr). Arrhenius expressions which describe our results are (units are 10?11 cm3molecule?1s?1; uncertainties are 2σ, precision only) k1 = (3.69 ± 0.33) exp[(208 ± 24)/T], k2 = (11.9 ± 1.7) exp[(151 ± 38)/T], and k3 = (1.93 ± 0.32) exp[(168 ± 42)/T]. The Cl + CD3SD reaction has been studied at 299 K and 396 K; values for k4 at these two temperatures are essentially the same as those measured for k2. Our results are compared with earlier studies and the mechanistic implications of observed negative activation energies and H? D kinetic isotope effects are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The temperature dependence of the rate coefficients for the OH radical reactions with iso-propyl acetate (k1), iso-butyl acetate (k2), sec-butyl acetate (k3), and tert-butyl acetate (k4) have been determined over the temperature range 253–372 K. The Arrhenius expressions obtained are: k1=(0.30±0.03)×10−12 exp[(770±52)/T]; k2=(109±0.14)×10−12 exp[(534±79)/T]; k3=(0.73±0.08)×10−12 exp[(640±62)/T]; and k4=(22.2±0.34)×10−12 exp[−(395±92)/T] (in units of cm3 molecule−1 s−1). At room temperature, the rate constants obtained (in units of 10−12 cm3 molecule−1 s−1) were as follows: iso-propyl acetate (3.77±0.29); iso-butyl acetate (6.33±0.52); sec-butyl acetate (6.04±0.58); and tert-butyl acetate (0.56±0.05). Our results are compared with the previous determinations and discussed in terms of structure-activity relationships. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29: 683–688, 1997.  相似文献   

12.
The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

13.
The rate coefficient for the gas‐phase reaction of chlorine atoms with acetone was determined as a function of temperature (273–363 K) and pressure (0.002–700 Torr) using complementary absolute and relative rate methods. Absolute rate measurements were performed at the low‐pressure regime (~2 mTorr), employing the very low pressure reactor coupled with quadrupole mass spectrometry (VLPR/QMS) technique. The absolute rate coefficient was given by the Arrhenius expression k(T) = (1.68 ± 0.27) × 10?11 exp[?(608 ± 16)/T] cm3 molecule?1 s?1 and k(298 K) = (2.17 ± 0.19) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are the 2σ (95% level of confidence), including estimated systematic uncertainties. The hydrogen abstraction pathway leading to HCl was the predominant pathway, whereas the reaction channel of acetyl chloride formation (CH3C(O)Cl) was determined to be less than 0.1%. In addition, relative rate measurements were performed by employing a static thermostated photochemical reactor coupled with FTIR spectroscopy (TPCR/FTIR) technique. The reactions of Cl atoms with CHF2CH2OH (3) and ClCH2CH2Cl (4) were used as reference reactions with k3(T) = (2.61 ± 0.49) × 10?11 exp[?(662 ± 60)/T] and k4(T) = (4.93 ± 0.96) × 10?11 exp[?(1087 ± 68)/T] cm3 molecule?1 s?1, respectively. The relative rate coefficients were independent of pressure over the range 30–700 Torr, and the temperature dependence was given by the expression k(T) = (3.43 ± 0.75) × 10?11 exp[?(830 ± 68)/T] cm3 molecule?1 s?1 and k(298 K) = (2.18 ± 0.03) × 10?12 cm3 molecule?1 s?1. The quoted errors limits (2σ) are at the 95% level of confidence and do not include systematic uncertainties. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 724–734, 2010  相似文献   

14.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   

15.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of reactions (1)–(4) as a function of temperature. In all cases, the concentration of the excess reagent, i.e., HBr or Br2, was measured in situ in the slow flow system by UV-visible photometry. Heterogeneous dark reactions between XBr (X = H or Br) and the photolytic precursors for Cl(2P) and O(3P) (Cl2 and O3, respectively) were avoided by injecting minimal amounts of precursor into the reaction mixture immediately upstream from the reaction zone. The following Arrhenius expressions summarize our results (errors are 2σ and represent precision only, units are cm3 molecule?1 s?1): ??1 = (1.76 ± 0.80) × 10?11 exp[(40 ± 100)/T]; ??2 = (2.40 ± 1.25) × 10?10 exp[?(144 ± 176)/T]; ??3 = (5.11 ± 2.82) × 10?12 exp[?(1450 ± 160)/T]; ??4 = (2.25 ± 0.56) × 10?11 exp[?(400 ± 80)/T]. The consistency (or lack thereof) of our results with those reported in previous kinetics and dynamics studies of reactions (1)–(4) is discussed.  相似文献   

16.
The rate constants for the gas‐phase reactions of three deuterated toluenes with hydroxyl radicals were measured using the relative rate technique over the temperature range 298–353 K at about 1 atm total pressure. The OH radicals were generated by photolysis of H2O2, and helium was used as the diluent gas. The disappearance of reactants was followed by online mass spectrometry, which resulted in high time resolution, allowing for a large amount of data to be collected and used in the determination of the Arrhenius parameters. The following Arrhenius expressions have been determined for these reactions (in units of cm3 molecule?1 s?1): k=(6.42?0.99+1.17)×10?13exp [(661±54)/T] for toluene‐d3, k=(2.11?0.69+1.03)×10?12exp [(287±128)/T]for toluene‐d5, and k=(1.40+0.44?0.33)×10?12exp [(404±88)/T]for toluene‐d8. The kinetic isotope effects (KIEs, kH/kD) of these reactions were 1.003 ± 0.042 for all three compounds at 298 K. The KIE for toluene‐d3 was temperature dependent; at 350 K, its KIE was 1.122+0.048?0.046. The KIE of toluene‐d5 and toluene‐d8 did not vary significantly with temperature. These KIE results suggest that methyl H‐atom abstraction is more important than aromatic OH addition at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 821–827, 2012  相似文献   

17.
Absolute rate constants for the gas phase reactions of OH radicals with ethane (k1), benzene (k2), fluorobenzene (k3), chlorobenzene (k4), bromobenzene (k5), iodobenzene (k6), and hexafluorobenzene (k7) have been measured over the temperature range 234–438 K using the flash photolysis resonance fluorescence technique. The rate constants measured at room temperature (296 K), at total pressures of argon diluent between 25 and 50 Torr, were (in units of 10?13 cm3 molecule?1 s?1): k1 = (2.30 ± 0.26), k2 = (12.9 ± 1.4), k3 = (6.31 ± 0.81), k4 = (7.41 ± 0.94), k5 = (9.15 ± 0.97), k6 = (13.2 ± 1.6), and k7 = (1.61 ± 0.24), respectively. The indicated errors are our estimate of 95% confidence limits and include two standard deviations from the least-squares analysis together with an allowance for any possible systematic errors in the measurements. At elevated temperatures and under pseudo-first-order reaction conditions, non-exponential hydroxyl radical decays were observed for benzene and the monosubstituted halo-aromatics. For ethane and hexafluorobenzene, exponential decays were observed over the complete temperature range and the data were fit by the Arrhenius expressions: k1 = (8.4 ± 3.1) × 10?12 exp[(?1050 ± 100)/T] and k7 = (1.3 ± 0.3) × 10?12 exp[(?610 ± 80)/T], respectively. The results are compared with previous literature data and the mechanistic implications are discussed.  相似文献   

18.
The rate constants for the gas‐phase reactions of ground‐state oxygen atoms with CF2?CFCl (1), (E/Z)‐CFCl?CFCl (2), CFCl?CH2 (3), and (E/Z)‐CFH?CHCl (4) have been measured directly using a discharge flow tube coupled to a chemiluminescence detection system. The experiments were carried out under pseudo‐first‐order conditions with [O3P)]0 ? [ethene]0. The temperature dependences of the reactions were studied for the first time in the range 298–359 K. The proposed Arrhenius expressions (in units of cm3 molecule?1 s?1) were k1 = (1.07 ± 0.32) × 10?11 exp{?(8000±1600)/RT}, k2 = (0.56 ± 0.10) × 10?11 exp{?(8700±500)/RT}, k3 = (4.23 ± 1.25) × 10?11 exp{?(12,700 ± 800)/RT}, and k4 = (1.13 ± 0.62) × 10?11 exp{?(10,500 ± 1500)/RT}. All the rate coefficients display a positive temperature dependence, which highlights the importance of the irreversibility of the addition mechanism for these reactions. Halogen substitution in the ethene is discussed in terms of reactivity with O(3P). © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 763–769, 2005  相似文献   

19.
Using the relative kinetic method, rate coefficients have been determined for the gas‐phase reactions of chlorine atoms with propane, n‐butane, and isobutane at total pressure of 100 Torr and the temperature range of 295–469 K. The Cl2 photolysis (λ = 420 nm) was used to generate Cl atoms in the presence of ethane as the reference compound. The experiments have been carried out using GC product analysis and the following rate constant expressions (in cm3 molecule?1 s?1) have been derived: (7.4 ± 0.2) × 10?11 exp [‐(70 ± 11)/ T], Cl + C3H8 → HCl + CH3CH2CH2; (5.1 ± 0.5) × 10?11 exp [(104 ± 32)/ T], Cl + C3H8 → HCl + CH3CHCH3; (7.3 ± 0.2) × 10?11 exp[?(68 ± 10)/ T], Cl + n‐C4H10 → HCl + CH3 CH2CH2CH2; (9.9 ± 2.2) × 10?11 exp[(106 ± 75)/ T], Cl + n‐C4H10 → HCl + CH3CH2CHCH3; (13.0 ± 1.8) × 10?11 exp[?(104 ± 50)/ T], Cl + i‐C4H10 → HCl + CH3CHCH3CH2; (2.9 ± 0.5) × 10?11 exp[(155 ± 58)/ T], Cl + i‐C4H10 → HCl + CH3CCH3CH3 (all error bars are ± 2σ precision). These studies provide a set of reaction rate constants allowing to determine the contribution of competing hydrogen abstractions from primary, secondary, or tertiary carbon atom in alkane molecule. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 651–658, 2002  相似文献   

20.
Unrestricted density functional theory (BHandHLYP) calculations have been performed, using the 6‐311G(d,p) basis sets, to study the gas‐phase OH hydrogen abstraction reaction from methionine. The structures of the different stationary points are discussed. Ring‐like structures are found for all the transition states. Reaction profiles are modeled including the formation of prereactive complexes, and negative net activation energy is obtained for the gamma H‐abstraction channel. A complex mechanism is proposed, and the rate coefficients are calculated using transition state theory over the temperature range 250–350 K. The rate coefficients are proposed for the first time and it was found that in gas phase the hydrogen abstraction occurs almost exclusively from the gamma site. The large overall rate coefficient for the methionine + OH reaction compared to other free amino acids could explain the significant role of methionine in the oxidative processes. The following expressions in [L/(mol s)] are obtained for the alpha, beta, and gamma H‐abstraction channels, and for the overall temperature‐dependent rate constants, respectively: kα = (3.42 ± 0.11) × 108 exp[(?1118 ± 9)/T], kβ = (1.13 ± 0.03) × 108 exp[(?1070 ± 8)/T], kγ = (2.11 ± 0.26) × 107 exp[(2049 ± 34)/T], and ktot = (2.12 ± 0.26) × 107 exp[(2047 ± 34)/T]. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 212–221, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号