首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and Spectroscopic Characterization of the Cluster Anion [(Mo6Cl )(CF3COO) ]2? On heating of [(Mo6Cl)Cl]2? in dichloromethane with trifluoroacetic acid the new stable cluster anion [(Mo6Cl)(CF3COO)]2? is formed by elimination of HCl. The (Mo6Cl) unit remains unattacked. The 19F nmr spectrum exhibits a downfield shifted singulett as compared to free CF3COO? indicating the equivalence of all trifluoroacetate ligands, which unidentate coordination is deduced from characteristic i. r. frequencies of the carboxyl groups. The most intense i.r. band at 501 cm?1 is assigned to the antisymmetric Mo? Oa vibration, the most intense Raman line at 319 cm?1 to the breathing mode of the Cl cube.  相似文献   

2.
On the Reactions of CH3OCl, CF3OCl, CF3OF, and CF3OH with the Superacid System HF/MF5 (M = As, Sb). Preparation and Characterization of CH3OCl(H)+MF6? and CF3OCl(H)+MF6? The preparation of the chlorine oxoniumsalts CH3OCl(H)+MF6? and CF3OCl(H)+MF6? by protonation of CH3OCl and CF3OCl in the superacid solution of HF/MF5 (M = As, Sb) is described. However CF3OF and CF3OH have not been protonated under the same conditions. In the case of CF3OH the formation of F2CO · MF5 is observed. The novel compounds are characterized by nmr- and vibrational spectroscopy.  相似文献   

3.
Fluorinate with Trifluoromethylhypochlorite CF3OCl. Preparation and Crystal Structure Determination of Trifluoromethyliodine Tetrafluoride CF3IF4 The preparation of Trifluoromethyliodine tetrafluoride (CF3IF4), from Trifluoromethyliodide (CF3I) with Trifluoromethylhypochlorite (CF3OCl), and the crystal structure of CF3IF4 at 172(1) K is described. CF3IF4 crystallizes in the monoclinic space group P21/c with a = 762.2(7) pm, b = 842.9(10) pm, c = 856.4(7) pm, β = 99.65(7)° with four formula units per unit cell.  相似文献   

4.
Preparation, Spectroscopic Characterization, and Crystal Structure of (CF3)2C(F)OH2+Sb2F11 Hexafluoroacetone, (CF3)2CO, reacts at –78 °C with the superacid HF/SbF5 under formation of the primary oxonium salt, (CF3)2C(F)OH2+Sb2F11, which is characterized by vibrational spectroscopy and NMR spectra. The salt crystallizes in the triclinic space group P1 with a = 817.9(1), b = 989.0(1), c = 1003.8(1) pm and 2 formula units per unit cell.  相似文献   

5.
Preparation and Spectroscopic Characterization of Bond Isomeric Halogenoselenocyanato-Osmates(IV) and -Rhenates(IV) By oxidative ligand exchange of appropriate chloro-iodo complexes of OsIV or ReIV with (SeCN)2 in CH2Cl2 or by heterogeneous reaction with Pb(SeCN)2 or AgSeCN in CH2Cl2 the new complexes cis-[OsCl4(NCSe)(SeCN)]2?, tr.-[OsCl4Br(NCSe)]2?, tr.-[OsCl4Br(SeCN)]2?, [ReCl5(NCSe)]2?, [ReCl5(SeCN)]2?, tr.-[ReCl4I(NCSe)]2?, tr.?[ReCl4(NCSe)(SeCN)]2? and tr.?[ReCl4(NCSe)2]2? are formed and isolated as pure compounds by ion exchange chromatography on DEAE-cellulose. The bond isomers are significantly distinguished by the frequencies of innerligand vibrations: n?CN(Se) > n?CN(N); n?CSe(N) > n?CSe(Se); δNCSe > δSeCN. The electronic spectra (10 K) of the solid salts reveal a bathochromic shift for the charge transfer bands of the Se isomers as compared with the corresponding N isomers. The intra-configurational transitions are observed for the OsIV complexes at 600 to 2400 and for the ReIV complexes at 500 to 1600 nm. The 77Se nmr signals of the OsIV bond isomers are registrated for Se binding in the region 970 to 1040 ppm, for N coordination downfield at 1540 to 1640 ppm.  相似文献   

6.
Preparation and Spectroscopic Characterization of Perfluoro(isopropyl)-trifluoroacetylperoxide (CF3)2C(F)OOC(O)CF3 The reaction of perfluoroacetone (CF3)2CO with OF2 in a ratio 2 : 1 yields Perfluoro(isopropyl)-trifluoroacetylperoxide (CF3)2C(F)OOC(O)CF3. The reaction only occurs under CsF-catalysis. (CF3)2C(F)OOC(O)CF3 is characterized by vibrational, nmr and mass spectra. Using an excess of OF2 does not give any stable product.  相似文献   

7.
Preparation of Trifluormethylhalogen Iodate(I) Salts (CH3)4N+CF3IX? (X = F, Cl, Br) and Trifluormethyltrifluormethoxy Iodate(I) (CH3)4N+CF3IOCF3? We describe the preparation of new trifluormethyliodate(I) salts CF3IX? (X = F, Cl, Br, OCF3). (CH3)4N+CF3ICl? and (CH3)4N+CF3IBr? are obtained via addition of CF3I with the corresponded tetramethylammonium halogenide. (CH3)4N+CF3IOCF3? is synthesized by comproportionation of (CH3)4N+CF3ICl? with CF3OCl under formation of Cl2 at ?78°C. (CH3)4N+CF3IF? is formed either, through thermolysis of (CH3)4N+ CF3IOCF3? under separation of COF2, or reaction of CF3I with (CH3)4N+ OCF3?. The thermolabile compounds have been characterized by i.r., Raman, 19F-, 13C NMR spectroscopy.  相似文献   

8.
Preparation and Spectroscopic Characterization of the Fluorophosphonium Salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) The preparation of the fluorophosphonium salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) by methylation of the corresponding thiophosphorylhalides in the system CH3F/SO2/MF5 (M = As, Sb) is reported. The new salts are characterized by their vibrational and NMR spectra.  相似文献   

9.
Preparation and Spectroscopic Characterization of the Persulfonium Salts (CH3)(CF3)SF3+SbF6? and (CH3)(CF3)2SF2+SbF6? and Crystal Structure of CF3SF2+SbF6? [1] . The preparation of the persulfonium salts (CH3)(CF3)SF3+SbF6? and (CH3)(CF3)2SF2+SbF6? by methylation of the sulfuranes CF3SF3 and (CF3)2SF2 with CH3OSO+SbF6? in liquid SO2 is reported. The thermolabile compounds are characterized by IR, Raman, 1H, 13C, and 19F NMR spectroscopy. CF3SF2+SbF6? crystallizes in the space group C2/c with a=16.889(8) Å, b=7.261(4) Å, c=13.416(7) Å, β=91.08° with 8 formula units per unit cell at 167 K. Cations and anions are connected via short SF contacts forming a Ψ-octahedral surrounding of the central S atom which is in close analogy to the already known CF3SF2+AsF6?.  相似文献   

10.
Preparation and Spectroscopic Characterization of Fluorotrichloroarsonium Hexafluoroarsenate, AsFCl3+AsF6? The mixed halide pniktide cation AsFCl3+ is prepared by oxidative fluorination of AsCl3 with XeF+ AsF6?. AsFCl3+ AsF6? is characterized by IR, Raman, and 19F-NMR spectroscopy.  相似文献   

11.
Preparation and Spectroscopical Characterization of Di(acido)phthalocyaninatorhodates(III) Triethylendiaminorhodiumiodide reacts quickly and completely with boiling phthalodinitrile precipitating ?rhodiumphthalocyanine”?, which is purified and dissolved in alkaline media as di(hydroxo)phthalocyaninatorhodate(III). Acidification in the presence of halides or pseudohalides yields less soluble acidophthalocyaninatorhodium reacting with tetra-n-butyl-ammonium(pseudo)halide to give (blue)green tetra-n-butyl-ammoniumdi(acido)phthalocyaninatorhodate(III), (nBu4N)[Rh(X)2Pc2?] (X = Cl, Br, I, N3, CN, NCO, SCN, SeCN). The asym. Rh? X-stretching vibration (vas(RhX)) is observed in the f.i.r. at 290 (X = Cl), 233 (Br), 205 (I), 366 (N3), 347 (CN), 351 (NCO), 257 (SCN) and 214 cm?1 (SeCN). vs(RhI) is the only sym. Rh? X-stretching vibration excited at 131 cm?1 in the Raman spectrum. The m.i.r. and resonance Raman spectra are typical for hexacoordinated phthalocyaninatometalates(III). The influence of the axial ligands is very small. The frequency of the stretching vibrations of the pseudohalo-ligands are as expected (in the case of the ambident ligands the bonding atom is named first): vas(NN) at 2006 and vs(NN) at 1270 cm?1 (N3); vas(CN) at 2126 (CN), 2153 (NCO), 2110 (SCN) and 2116 cm?1 (SeCN). The characteristic π–π*-transitions of the Pc2?-ligand dominate the UV-vis spectra. The splitting of the Q and N region is discussed and the weak absorbance at ca. 22 kK is assigned to a n–π*-transition.  相似文献   

12.
Preparation and Spectroscopic Characterization of Fluoro-Chloro-Iridates(V) By careful oxidation of the pure fluoro-chloro iridates(IV) with BrF3 in dichloromethane the corresponding pentavalent complexes [IrF5Cl]?, cis-[IrF4Cl2]?, and fac-[IrF3Cl3]? are formed without replacements of Cl ligands. The vibrational spectra of these mixed ligand complexes are assigned according to point groups C4v, C2v, and C3v. The increased bond strength compared with the corresponding IrIV compounds is indicated by a significant shift to higher energy by about 5–15%. The anomalous intensities of some of the Raman active fundamentals are attributed to the resonance Raman effect. The electronic absorption spectra are measured on the solid tetraethylammonium salts of the fluoro-chloro iridates(V) at 10 K. The strong bands in the UV/VIS region are assigned to charge transfer transitions from π(t1u, t2u) and σ(t1u) Cl orbitals into the π(t)IrV level. The intraconfigurational transitions within the t configuration of IrV are split by spin orbit coupling and lowered symmetry, observed in the ranges 3000, 5100–6400, 10900–13000, and 18200 cm?1. The O? O transitions are deduced from the vibrational fine structure; in some cases they are confirmed by electronic Raman bands. With increasing number of F ligands all absorption bands are shifted systematically to higher energies.  相似文献   

13.
Preparation and Spectroscopic Characterization of Carboxylatododecaborates The tetrabutylammonium salt (TBA)2[B12H12]2? reacts with formic, acetic, cyanoacetic, phenylacetic, propionic, butyric, and thioacetic acid at temperatures between 80 and 150°C forming the carboxylatododecaborates [(RC(O)O)n? B12H12? n]2?, n = 1, 2, [CH3C(O)S? B12H11]2?. The isolation of the pure compounds is achieved by ion exchange chromatography on diethylaminoethyl cellulose. In case of the dicarboxylatododecaborates beside the 1,7-isomer predominantly the 1,2-isomer, while 1,2-[(OH)C6H5CH2C(O)O? B12H10]2? is formed exclusively. The alcaline hydrolysis of [RC(O)O? B12H11]2? and 1,2-[(OH)C6H5CH2C(O)O? B12H10]2? results in [(OH)? B12H11]2? and 1,2-[(OH)2? B12H10]2?. All compounds are characterized by their 11B-nmr, 13C-nmr and IR spectra. The 11B-nmr signals are assigned by a sheme allowing to establish expected spectra.  相似文献   

14.
Preparation of N-Methylhalidonitrilium Salts XCNCH3+MF6? (X = Cl, Br, I; M = As, Sb) and the N-Methyl-trifluoroacetonitrilium Salts CF3CNCH3+MF6? The N-methyl-halidonitrilium salts XCNCH3+MF6? (X = Cl, Br, I; M = As, Sb) are synthesized by methylation of cyanogen halides with CH3F/MF5 in SO2 at low temperatures. The N-methyl-trifluoroacetonitrilium salts CF3CNCH3+MF6? (M = As, Sb) are formed analogous with trifluoroacetonitrile. All salts are characterized by vibrational and NMR spectroscopy.  相似文献   

15.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

16.
Preparation and Spectroscopical Properties of Nitridophthalocyaninatorhenium(V) Nitridophthalocyaninatorhenium(V) ([ReNPc2?]) is prepared by the reaction of dirheniumheptoxide with ammoniumiodide in molten 1,2-dicyano-benzene. The diamagnetic complex is chemically und thermically extremely stable. In the Uv-vis spectra the typical π-π*-transitions of the Pc2? ligand are observed. Extra bands in the solid state spectrum are due to strong excitonic coupling of ca. 2.8 kK. In the resonance Raman spectra the intensity of the Re≡N stretching vibration (v(Re≡N)) at 969 cm?1 is selectively enhanced by laser excitations above 19.0 kK. v(Re≡N) is a dominant m.i.r. absorption at 976 cm?1.  相似文献   

17.
Preparation and Spectroscopic Characterization of Bond-Isomeric Halogenorhodanoosmates(IV) By oxidation of tr.-[OsCl4BrI]2? or tr.-[OsCl4I2]2? with (SCN)2 in CH2Cl2, by substitution of [OsCl5I]2? with SCN? or [OsCl5(NCS)]2? with F? in toluene and by reaction of [OsF5Cl]2? with (SCN)2 in CH2Cl2 the following bondisomers are prepared: tr.-[OsF4Cl(NCS)]2?/tr.-[OsF4Cl(SCN)]2?, tr.-[OsFCl4(NCS)]2?/tr.-[OsFCl4(SCN)]2?, tr.-[OsCl4Br(NCS)]2?/tr.-[OsCl4Br(SCN)]2?, tr.-[OsCl4I(NCS)]2?/tr.-[OsCl4I(SCN)]2?,tr.-[OsCl4(NCS)2]2?/tr.-[OsCl4(NCS)(SCN) ]2?/tr.-[OsCl4(SCN)2]2?, [OsBr5(NCS)]2?/[OsBr5(SCN)]2? and tr.-[OsBr4(NCS)(SCN)]2?. All complexes are isolated as pure compounds by ion exchange chromatography on DEAE-cellulose. In the IR and Raman spectra νCN(S), νCS(N) and δNCS are found at higher wave numbers than νCN(N), νCS(S) and δSCN. According to spin orbit coupling and to lowered symmetry (D4h, C4v) the splitted intraconfigurational transitions are observed at 10 K as weak bands in the regions 600, 1000, 2000 nm. The O? O transitions are calculated from vibrational fine structure and in some cases are confirmed by electronic Raman bands with the same frequencies. The energy niveaus deduced with ζ(OsIV) = 3200 cm?1 and the calculated Racah parameters B are in good agreement with the barycenters of the observed multiplets for D4h and C4v symmetry.  相似文献   

18.
Preparation and Spectroscopic Characterization of Bondisomeric Halogenoselenocyanatoosmates (IV) The new compounds [OsCl5(NCSe)]2?, [OsCl5(SeCN)]2?, tr.-[OsCl4(NCSe)(SeCN)]2?, tr.-[OsCl4I(NCSe)]2? and tr.-[OsCl4I(SeCN)]2? are prepared from [OsCl5I]2? and tr.-[OsCl4I2]2? by oxidative ligand exchange with (SeCN)2 or by reaction with suspended Pb(SeCN)2 in CH2Cl2 and isolated by ion exchange chromatography on DEAE cellulose. The bondisomers are significantly distinguished by the frequencies of innerligand vibrations: νCN(Se), νCN(N), νCSe(N) > νCSe(Se), δNCSe >, δSeCN. The electronic spectra measured at 10 K on the solid salts exhibit in the region 450–650 nm intensive Se → Os and N → Os charge transfer bands. Essentially weaker intraconfigurational transitions (t) are observed near to 2000 and 1000 nm, splitted by lowered symmetry (C4v) and spin orbit coupling. Only some of the 0–0-transitions may be assigned by measuring electronic Raman bands with the same frequencies.  相似文献   

19.
Preparation of the Halogenonitrilium Salts XCNH+MF6 (X = CI, Br, I; M = As, Sb) and the Trifluoroacetonitrilium Salts CF3CNH+MF6 The halogenonitrilium salts XCNH+MF6 (X = CI, Br, I; M = As, Sb) are synthesized by protonation of cyanogen halides in the superacide system HF/MF5 at low temperature. The synthesis of trifluoroacetonitrilium salts CF3CNH+MF6 (M = As, Sb) is proceeded analogous with trifluoroacetonitrile. All salts are characterized by vibrational and NMR spectroscopy.  相似文献   

20.
CrIII Phthalocyaninates: Synthesis and Spectroscopical Properties of Di(halo)phthalocyaninato(2 –)chromates(III) [Cr(H2O)2Pc2?]+ reacts in acetone with (nBu4N)X to yield less soluble tetra(n-butyl)ammonium di(halo)phthalocyaninato(2 –)chromate(III), (nBu4N)[Cr(X)2Pc2?] (X = F, Cl, Br, I). In the differential pulse voltammograms the first ring oxidation is observed at 0,80 V, the ring reduction at ?1,48 V and the metal reduction (Cr(III)/Cr(II)) at ?0,80 V (averaged potentials). The last is followed by a partial dissociation of one of the halo ligands. In the UV-VIS-NIR spectra there are three weakly absorbing spin-allowed trip-quarter(TQ) transitions (TQ1 (8,4) < TQ2 (11,5) < TQ3 (20,6); averaged values (av) in 103 cm?1), a (Pc + X)-CrCT transition (31,3; av in 103 cm?1) and the characteristic π-π* transitions of the Pc2? ligand (B (14,5) < Q1 (24,5) < Q2 (29,2) < N (36,0) < L (41,0); av in 103 cm?1). Q1 and (Pc + X)-CrCT depend strongly on the halo ligands. Prominent luminescence spectra are obtained by excitation within the TQ1 region, in which the spin-forbidden trip-sextet transition (8330 (X = F), 7680 (Cl), 7460 (Br) 7450 cm?1 (I)) dominates at low temperatures (T < 50 K). The vibrational spectra are discussed. In coincidence of the excitation lines with TQ3, vs(Cr? X) at 458 (X = F) < 246 (Cl) < 157 (Br) < 107 cm?1 ( I ) is selectively resonance Raman enhanced. vas(Cr? X) is observed in the FIR spectrum at 522 (X = F) < 283/326 (Cl) < 227 (Br) < 205 cm?1 ( I ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号