首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft copolymerization of low‐density polyethylene (LDPE) with a maleic anhydride (MAH) was performed using intermeshing corotating twin‐screw extruder in the presence of benzoyl peroxide (BPO). The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were prepared in a corotating twin‐screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microcopy (SEM). The influence of the variation in temperature, BPO and MAH concentration, and temperature on the grafting degree and on the melt viscosity was studied. The grafting degree increased appreciably up to about 0.45 phr and then decreased continuously with an increasing BPO concentration. According to the FTIR analysis, it was found that the amount of grafted MAH on the LDPE chains was ~5.1%. Thermal analysis showed that melting temperature of the graft copolymers decreases with increasing grafting degree. In addition to this, loss modulus (E″) of the copolymers first increased little with increasing grafting and then obviously decreased with increasing grafting degree. Furthermore, the results revealed that the tensile strength of the blends increased linearly with increasing PA6 content. The results of SEM and mechanical test showed that the blends have good interfacial adhesion and good stability of the phase structure, which is reflected in the mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 267–275, 2010  相似文献   

2.
Polyamide 6 (PA) and ethylene-propylene rubber with maleic functionality (EPMA) were blended in a batch mixer. EPMA anhydride groups react with amine chain ends of polyamide and form a grafted copolymer at the interface. The molecular weights of the grafted PA and of the free PA were measured. The molecular weight of the free PA decreases during the processing. This effect is due to the hydrolysis of the PA consecutively to its reaction with anhydride groups. The molecular weight of both grafted and free polyamide decreases during the processing. Moreover, the molecular weight of the grafted PA is lower than that of the free PA. At constant mixing time, a high conversion level produces grafted PA with a higher molecular weight. This is the result of molecular weight segregation for interfacial reaction. Small molecules react faster at the interface than larger ones. If we compare experimental results with model predictions, two segregation regimes are observed. For high shear and low EPMA concentrations, dispersion is very fast; the segregation only depends on molecular elasticity. In this case, the best correlation between model and experiment is obtained for low interfacial thicknesses. For low shear, or for EPMA concentrations close to the phase inversion composition, the segregation is more noticeable, which is mainly due to the diffusion of macromolecules through the brush of already grafted molecules. In this case, there is a clear competition between the compatibilization and the grafting reaction. Molecular weight segregation gives low ratio of the grafted PA molecular weight to the free PA molecular weight. This is detrimental to interfacial properties of the grafted copolymer formed by melt reactivity. Strategies are developed to improve this ratio in order to investigate its influence on the mechanical properties. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Polyamide samples were heated under vacuum or mixed in a Brabender plastograph. UV absorbance, chain end concentration, and molecular weight were studied. Postcondensation was observed for polyamide heated under vacuum. For polyamide samples mixed in the plastograph, atmosphere, shear rate, and temperature changed. Melt viscosity and intrinsic viscosity are in good correlation in a log-log plot. Oxidation effect on molecular weight and amine chain end concentration could be well related to UV absorbance. The oxygen diffusion into the molten polyamide is a critical parameter. The oxygen concentration in the polyamide mixed under air is ca. 20 times higher than when mixed under nitrogen. The introduction of preoxidized material in the molten polyamide or mixing in the presence of oxygen have similar effects. Postcondensation and oxidation strongly influence the melt behavior of polyamides. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The side reactions connected with the polycondensation of α,ω-diamino oligoamides and α,ω-dianhydride oligoisobutylenes are studied on low and high molecular weight models. Models for amine and anhydride end groups are dodecylamine and (2-dodecene-1-yl) succinic anhydride, respectively; their reaction is studied in the bulk (170°C) and in solution (142, 152, and 162°C); the products are analyzed by 1H-, 13C-, and 1H-13C-NMR and GPC. Some of these products and the junctions between the blocks are prepared independently. Models of amide groups in the chain are N-dodecyldodecanamide and N-dodecyloctadecanamide; their reaction with anhydride model results in cleavages with formation of imide groups. The results obtained from low molecular weight models are confirmed by studies on oligomers. They show unambiguous by that crosslinking which accompanies the block polycondensation originates from the reaction of amino-end groups with the intermediary acid groups resulting from the amine-anhydride reaction.  相似文献   

5.
This study examines the legitimacy of using the reaction kinetics of low molecular weight model compounds in solution to predict the chemical kinetics of polymer-bound species in a homogeneous melt. The reaction under study takes place between an aliphatic secondary amine, diisooctadecylamine (DiOA), and a 5-membered anhydride ring, saturated maleic anhydride (MA), forming an amic acid product. The MA species was present as a pendant graft on either a model compound, dodecane-g-(maleic anhydride) (dodecane-g-MA), or a polymer chain, linear low-density polyethylene-g-(maleic anhydride) (LLDPE-g-MA). Pseudo-second-order kinetics of the anhydride consumption are followed by infrared spectroscopy, either in situ in dodecane solution or by scanning frozen film samples taken from a linear low-density polyethylene melt. It was found that the LLDPE-g-MA/DiOA system reacted at a slightly slower rate than the dodecane-g-MA/DiOA system in the low-viscosity solution at 140°C. In the melt, the dodecane-g-MA/DiOA system experienced a small decrease in the overall reaction rate compared to the same reaction carried out in dodecane. However, the LLDPE-g-MA/DiOA system underwent a 65% decrease in the observed second-order rate constant on going from a solution to the melt. To explain these phenomena, the effects of diffusion, miscibility, and chain entanglements in the melt are examined here. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1573–1582, 1998  相似文献   

6.
PAmXD,6 [poly(m-xylylene adipamide)] was processed using a Brabender plastograph at 30 rpm and at 265 ± 5°C. The evolution of the Mn versus mixing time determined from solution viscosity and chain end concentrations measurements shows that PAmXD,6 undergoes hydrolysis or condensation reactions depending on its initial molecular mass. Lower masses undergo condensation while higher masses undergo hydrolysis. The determination of water concentration in the melt during mixing time confirmed that this behavior is related to an equilibrium constant which was estimated at 500 ± 100. For a mixing period shorter than 20 min, a good correspondence was observed between Mn values determined either by chain end concentrations or by solution viscosity. However, for a mixing period longer than 20 min, discrepancy between Mn values using both methods witnesses the probable appearance of oxidative degradation of PAmXD,6. Mechanisms adapted from the established oxidation reactions of PA6 and PA6,6 are proposed to justify the PAmXD,6 behavior. Those reactions could explain the slight yellowing of PAmXD,6 during its processing. It was also shown that the PAmXD,6 Brabender plastograph mixing torque (30 rpm, 265 ± 5°C) is linearly related to Mn in a log/log diagram. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The in situ formation of a compatibilizer, consisting of a copolymer of PA grafted onto a maleic anhydride (MA) containing polymer, is essential for the morphology and properties of the corresponding PA blends. In this study four blends, containing PA-6 or PA-6.6 and EPDM-g-MA or poly(styrene-co-maleic anhydride) (SMA; 28 wt % MA), were prepared and characterized. Chemical analyses showed that the amount of PA graft is independent of the blend composition. Going from EPDM-g-MA to SMA the MA content of the original MA-containing polymer increases, which in the corresponding blends results in an increase in the number of PA grafts and a decrease in the length of the PA grafts. In the SMA blends the number averaged molecular weight of the grafted PA is only about 200 g/mol. It is postulated that the water molecule, released upon imide formation at the PA/(MA-containing polymer) interface, hydrolyses a PA amide group, resulting in a new amine end group, which in its turn reacts with the MA-containing polymer, etc. Differential scanning calorimetry shows that the degree of crystallinity of the PA phase is decreased only when the size of the PA phase between the MA-containing polymer domains approaches the PA crystalline lamellar thickness. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 179–188, 1998  相似文献   

8.
4-PEG接枝苯乙烯-马来酸酐交替共聚物的合成及功能化   总被引:2,自引:0,他引:2  
采用普通自由基聚合和可逆加成一断裂链转移(RAFT)自由基聚合方法合成了对位PEG取代苯乙烯(PEG-g-St)和马来酸酐的交替共聚物(P((PEG—g—St)-alt-MA)),”CNMR分析表明PEG-g-St和马来酸酐单元采取交替的序列结构.利用反应性基团-马来酸酐单元的水解以及胺解可以制备功能性的PEG聚合物.以月桂胺为模型小分子研究了该聚合物的胺解,得到4-PEG-苯乙烯与羧酸基团以及疏水烷烃的交替序列聚合物,该双亲聚合物在水溶液中形成组装体.  相似文献   

9.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

10.
Blending polytetrafluoroethylene (PTFE) to polyamide‐6 (PA6) with and without maleic anhydride‐grafted polytetrafluoroethylene (PTFE‐g‐MA) was produced in a corotating twin screw extruder, where PTFE acts as the polymer matrix and PA6 as the dispersed phase. The effect of PTFE‐g‐MA on the tensile properties and tribological propertiesof PTFE/PA6 polymer blends is studied. Results show that the structural stability and morphology of the blends were greatly improved by PTFE‐g‐PA6 grafted copolymers, which were formed by the in situ reaction of anhydride groups with the amino end groups of PA6 during reactive extrusion forming an imidic linkage. The presence of PTFE‐g‐PA6 in the PTFE continuous phase improves the interfacial adhesion, as a result of the creation of an interphase that was formed by the interaction between the formed PTFE‐g‐PA6 copolymer in situ and both phases. Compared with thePTFE/PA6 without PTFE‐g‐MA, the PTFE/PA6 with PTFE‐g‐MAhad the lowest friction coefficient and wear under given applied load and reciprocating sliding frequency. The interfacial compatibility of the composite prevented the rubbing‐off of PA6, accordingly improved the friction and wear properties of the composite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6) blends were reactively compatibilized by maleic anhydride (MA) grafted PPO (PPO‐g‐MA) and reinforced by short glass fibers (SGF) via melt extrusion. An observation of the SGF‐polymer interface by scanning electronic microscope (SEM) together with etching techniques indicated that the PPO‐g‐MA played a decisive role in the adhesion of polymers to SGF. The rheological behavior was investigated by capillary rheometer, and the addition of PPO‐g‐MA, and SGF could increase the viscosity of the PPO/PA6 blends. The analysis of fiber orientation and distribution in the PPO/PA6/SGF composites showed PPO‐g‐MA favored to the random dispersion of SGF. The statistic analysis of SGF length showed that PPO‐g‐MA was helpful to maintain the fiber length during melt‐processing. For the composites at a given SGF content of 30 wt %, the addition of PPO‐g‐MA increased the tensile strength from 59.4 MPa to 97.1 MPa and increased SGF efficiency factor from 0.028 to 0.132. The experimental data were consistent with the theoretical predictions of the extension of Kelly‐Tyson model for tensile strength. The fracture toughness of the composites was investigated by single edge notch three‐point bending test. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2188–2197, 2009  相似文献   

12.
An interfacial reaction during melt mixing of maleic anhydride copolymer (SMA) encapsulated single wall carbon nanotubes (SWNT) and polyamide 6 (PA6) was used in order to disperse SWNT homogeneously and to enhance interfacial adhesion. The intended reactive coupling between PA6 and SMA was evident from IR spectroscopy. Nanocomposites with SMA encapsulated SWNT showed increased elongation at break as compared to PA6/SWNT composites. SEM investigation of tensile fractured surfaces of PA6/SWNT+SMA composites indicated enhanced interfacial adhesion between PA6 and SMA modified SWNT.  相似文献   

13.
This paper describes the experimental investigation of the interdiffusion/reaction mechanisms of asymmetric polymer-polymer interfaces. The study deals with the assessment of the chemical reactions occurring at the interface between two reactive polymers. A focal point of the investigation was to study these interfacial reactions by an array of techniques at very different space scales: from macroscopic viscoelastic investigations to IR and NMR spectroscopies at the molecular scale. The studied material pairs include PE-GMA/PA6 as the reactive system (RS) and PE/PA6 as the non-reactive one (NRS) - of coextruded multilayer polymers, i.e., after processing. The linear viscoelastic properties of the reactive multilayer systems were determined and the mechanisms were analyzed by NMR and FTIR measurements. Substantial reactions occurred during the rheological measurements and the results indicated the preferential formation of a copolymer at the interface, triggered by the neighboring layers. Moreover, the contribution of an interface/interphase effect was investigated along with the increase in the number of layers. The results showed that the variation in dynamic modulus of the multilayer system was a result of both diffusion and chemical reaction. Specific experiments were carried out to follow-up on the physicochemical phenomena, and the results were rationalized by comparing the obtained data with theoretical models. The effect of this interphase was quantified at a specific welding time and oscillation frequency thanks to rheological modeling. Because of the coupling between rheology and spectroscopical tools, potential reactions between the GMA functions and the amine/carboxylic polyamide chain ends were explored. The results highlighted that the main reaction mechanism was constituted by the crosslinking reaction between the GMA and carboxylic acid units, and not by that between GMA and amine end functions.  相似文献   

14.
As a model of serine hydrolase, the condensation polymers of salicylic acid, formaldehyde and methyl amine, n-propyl amine, n-hexyl amine or n-lauryl amine were prepared by polycondensation catalyzed by sulfuric acid. It was confirmed by potentiometric titration and infrared spectrum that the polymers containing tertiary amino group possess the structure which resembles the internal salt of amino acid in weak basic and weak acidic solution:  相似文献   

15.
双噁唑啉扩链尼龙1010   总被引:5,自引:0,他引:5  
对尼龙 10 10的加成型化学扩链做了系统的研究 ,并对 2 ,2′ 双 (2 唑啉 ) (BOZ)和 1,4 双 (2 唑啉基 )苯 (PBO)的偶联效果和扩链产物的性能做了详细的探讨 ,前者的扩链效果较好 .研究结果表明 ,尼龙10 10熔体的转矩随着反应时间的延长显著增加 .但转矩达到极大值后开始缓慢下降 ,表明扩链产物在高温条件下发生热降解 .扩链剂的用量存在最佳值 ,用量不足时偶联反应不充分 ,用量过量时封端反应加剧 .扩链以后尼龙 10 10的端羧基含量大大降低 ,反应温度对反应速率的影响符合阿累尼乌斯关系式 .扩链产物极限粘度大大高于尼龙原料 ,表明分子量显著提高  相似文献   

16.
This study investigates the role played by two different interface agents on the basis of atactic polypropylene in the continuous/disperse phase polypropylene/polyamide‐6 (PP/PA6) system. The two agents used were obtained at the authors' laboratories from an atactic polypropylene byproduct derived from industrial polymerization reactors and consist of two grafted polymers containing either succinic anhydride (a‐PP‐SA) or both succinyl‐fluorescein and succinic anhydride grafted groups (a‐PP‐SF/SA). The role of these grafted polymers as compatibilizers in PP/PA6 polymer blends has been confirmed in previous investigations on the basis of their macroscopic behavior. This work investigates the thermal study of these blends where polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Under isothermal conditions, thermal analysis agrees with the changes in the overall system behavior caused by the presence of the interface agents. These aspects were confirmed by polarized light microscopy that showed the morphology of the blends before and after modification with a‐PP‐SA or a‐PP‐SF/SA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1307–1315, 2002  相似文献   

17.
This article deals with a new way of improving the melt viscosity of linear poly(ethylene terephthalate) (PET) chains through the reaction of the PET end groups (alcohol and acid) with new chain extenders, 3‐(triethoxysilyl)propylsuccinic anhydride (ASSI) and 3‐glycidoxypropyltrimethoxysilane, during the melt processing of PET. The reactions, investigated with model compounds monomethylterephthalate and triethylene glycol monomethylether for PET? COOH and ? OH end groups, respectively, by multinuclear NMR spectroscopy (1H, 13C, and 29Si), provided evidence of well‐known acid–epoxide and alcohol–anhydride reactions, respectively. In addition, numerous other species appeared because of the presence of alkoxysilane groups, such as alcohol–alkoxysilane exchange reactions, acyloxysilane formation, and hydrolysis–condensation reactions of alkoxysilane. All these reactions led to the formation of branched chains when transposed to PET melt modification. A size exclusion chromatography analysis and the rheological behavior confirmed the presence of branched structures embedded in shorter linear PET chains. The rheological behavior of this blend was drastically modified in comparison with that of neat PET; consequently, there was an important increase in the zero‐shear viscosity, with a maximum concentration of branched structures of about 17 vol % obtained with an ASSI/PET molar ratio of 4. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2207–2223, 2005  相似文献   

18.
界面改性剂对刚性粒子增韧尼龙6熔体流变行为的影响   总被引:4,自引:0,他引:4  
研究了界面改性剂对高岭土增韧尼龙6熔体流变行为的影响,并与硅烷偶联剂KH550进行了比较.结果表明,KH550的加入明显降低了高岭土填充尼龙6熔体的粘度和弹性,而界面改性剂显著地增强了它的粘度和弹性.这一差别应归因于同KH550相比,界面改性剂更有效地增强了高岭土与尼龙6基体之间的界面结合和其自身的回弹性能.同时,界面改性剂的用量对高岭土填充尼龙6流变行为具有很大影响.当界面改性剂的用量为高岭土和尼龙6总量的2%时,界面改性剂在高岭土表面上趋于“饱和”,再增加界面改性剂的用量,对流变行为的影响不大.  相似文献   

19.
The synthesis of polyamide-imide (PAI) can be performed by the reaction of p-chlorophenol-(PCP) blocked 4,4′-diphenyl methane diisocyanates (BMDI) with trimellitic anhydride (TMA) using a two-stage heating. At 80°C the polyimide oligomers were first formed and the high molecular weight PAI can not be available until the temperature was increased to 120°C and stayed for 3 h, during which the amide groups were formed and the molecular weight was increased. The molecular weights of the synthesized PAIs on various conditions were analyzed by measuring the intrinsic viscosity, amide/imide ratio from IR spectra, and average chain length from GPC. The best reaction conditions for obtaining a high molecular weight PAI by the solution polymerization are: (a) using N-methyl pyrollidone (NMP) as solvent, (b) adding more BMDI/TMA ratio, and (c) adding tert-n-butyl amine as the catalyst for the dissociation of blocked MDI and controlling the catalyst concentration at 0.162M. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1711–1717, 1997  相似文献   

20.
利用扫描电子显微镜和动态力学分析仪研究了马来酸酐熔融接枝聚乙烯(PE-g-MA)对尼龙6/聚乙烯(PA6/PE)共混物形态结构和动态力学行为的影响.结果表明,PE-g-MA使PA6/PE共混物中PAe的玻璃化转变峰向低温例偏移,这主要归因于PE-g-MA改善了PA6和PE二者的相容性;但随着PE分散相中PE-g-MA所占比重的增加,PE-g-MA与PA6之间界面化学键合密度增大,使得PA6的玻璃化转变温度反而提高.同时,利用平行板流交仪研究了PE-g-MA对PA6/PE共混物熔体流变行为的影响.PE-g-MA使共混物熔体粘度和动态储能模量增大,这应归因于PA6/PE-g-MA之间在熔融共混过程中的界面化学键合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号