首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystal Structure Determination of N-Trimethylsilyl-N′-Methylimidazolium Bromide The reaction of Trimethylbromosilane and N-Methylimidazole (NMI) led to a 1:1 compound stable at room temperature. The reaction was carried out at room temperature and colorless single crystals were obtained by sublimation. The addition compound crystallizes in the orthorhombic space group Pbnb (No. 56) with lattice constants a = 1218.3(2)pm, b = 1333.6(1)pm, c = 1360.2(2)pm, Z = 8, Dcalc = 1.414 g/cm3. For 1506 independent reflections, measured at 21°C the structure could be refined to R = 0.067 and Rw = 0.062.  相似文献   

2.
A new member belonging to the binary phase diagram of BaF2 and BaCl2 was synthesized. The single domain crystals of Ba12F19Cl5 can be prepared from a nonstoichiometric flux with molar ratio of 1 : 1 between BaFCl and BaF2. The compound crystallizes at room temperature in the non-centrosymmetric hexagonal space group P6 2m with a = b = 1408.48(14) and c = 427.33(5) pm. Three different barium environements with coordination number of nine are found. The barium fluorine distances vary between 250.59(6) – a short distance compared to other Ba? F distances – and 302.7(1) pm and barium chlorine distances between 331.55(3) and 336.19(15) pm. This compound is further characterized using Raman spectroscopy.  相似文献   

3.
The Crystal Structures of α- and β-K3OCl The orange coloured compound K3OCl has been prepared. It exists in a low temperature modification (α-K3OCl) and a high temperature modification (β-K3OCl). The transition temperature is 364 ± 5 K. The crystal structures were determined by x-ray diffraction. α-K3OCl crystallizes at room temperature in the orthorhombic space group Pbnm (Z = 4) with the cell parameters a = b = 723.9(2) pm and c = 1 027.7(2) pm in the anti-GdFeO3-structure type. The high temperature modification β-K3OCl crystallizes (Z = 1) in the cubic space group Pm3m in the β-Ag3SI-structure type with a = 516.2(2) pm (T = 393 K).  相似文献   

4.
Is there a Wurtzite‐Modification of Lithium Bromide? — Studies on the System LiBr/LiI — Deposition of mixtures of LiBr/LiI (ratio: LiBr/LiI = 3:1, 2:1, 1:1, 1:2, 1:3, 1:4) and of pure LiI and LiBr from the gas phase onto a sapphire substrate at ‐196 °C in a high vacuum chamber were investigated by means of temperature‐dependent X‐ray diffraction. Below 0 °C LiI crystallizes in the hexagonal Wurtzite‐modification (β‐LiI) with a = 451.4(1) und c = 731.1(2) pm, which transforms into the cubic rock salt modification (α‐LiI, a = 602.57(3) pm) by heating up to room temperature. Co‐depositions of LiBr/LiI formed solid LiBr1‐xIx solutions that also crystallize in the Wurtzite‐modification, below room temperature. Compared to β‐LiI, these solid solutions are more stable and transform into the cubic phase at the significantly higher temperature of 80 °C. The lattice constants of LiBr1‐xIx with x ≈ 0.7 are a = 445.48(7), c = 719.1(1) pm and with x ≈ 0.4 are a = 431.50(5), c = 691.7(1) pm. The hexagonal phase LiBr1‐xIx is observed for the complete series of mixed crystals with 0.25 ≤ x ≤ 0.8. Both cubic phases, α‐LiI and LiBr, show solubilities of up to ca. 10 % of the respective other compound. In case of pure LiBr only the cubic modification (a = 551.54(2) pm, 25 °C) was observed in the complete temperature range (‐196 °C to 25 °C).  相似文献   

5.
Synthesis and Structure of Two- and Threenuclear Heterometallic Complexes with Nitrido Bridges between Re and Mo The reaction of ReNCl2(PMe2Ph)3 with MoCl4(NCEt)2 yields the heterometallic threenuclear complex [{(Me2PhP)3(EtCN)ClRe≡N–}2MoCl4][MoNCl5]. The anion [MoNCl5]2– presumably results from a transfer of the nitrido ligand from the Re to the Mo atom. The air-sensitive compound is paramagnetic with μeff = 2.87 B. M. at room temperature. A reduction of the magnetic moment to 1.74 B.M at 20 K starts at 140 K. The complex crystallizes in the orthorhombic space group Pca21 with a = 2430(1), b = 1328(1), c = 2436.3(2) pm, Z = 4. With bond angles Re–N–Mo of 164° and 167° the nitrido bridges are almost linear. The distances Re–N of 169 and 170 pm can be interpreted with triple bonds. The Mo–N bond lengths of 210 and 211 pm correspond to single bonds. In the anion [MoNCl5]2– the distance Mo≡N is 167 pm. Hydrolysis of the threenuclear complex results in a cleavage of one of the nitrido bridges to yield (Me2PhP)3(EtCN)ClRe≡N–MoOCl4. The compound is paramagnetic with μeff = 1.71 B.M. at room temperature. It crystallizes in the orthorhombic space group Pbca with a = 1718.5(4), b = 2037(1), c = 2041.1(7) pm, Z = 8. In the dinuclear complex the [MoOCl4] unit is only weakly coordinated to the nitrido ligand with Mo–N = 246.5 pm, while the distance of the Re≡N bond of 168.1 pm is almost unchanged in comparison with a terminal bond. The bond angle Re≡N–Mo is 165.6°.  相似文献   

6.
Synthesis and Crystal Structure of the μ-Dinitridosulfate(II) Complex [Na-15-crown-5]2[μ-(NSN)(MoF5)2] The title compound is formed at room temperature by the reaction of [MoCl4(NSCl)]2 with the equivalent amount NaF in acetonitrile in presence of the crown ether 15-crown-5. It forms black, moisture-sensitive crystals that were characterized by an X-ray structure determination (1 756 unique observed reflexions, R = 0.073). Crystal data (19°C): a = 965.5, b = 3 219, c = 1 161.1 pm, β = 95.42°; space group P21/n, Z = 4. The structure consists of ion triples in which the [Na-15-crown-5]+ ions are associated with the [μ-(NSN)(MoF5)2]2? ions via Na…?F contacts of 215 to 265 pm length. Each of the two MoF5 units of the anion is linked with one of the N atoms of the dinitridosulfate(II) group; bond angle NSN 103°, MoN bond lengths 172 pm.  相似文献   

7.
Studies on Polyhalides. 16. Preparation and Crystal Structures of Bipyridiniumpolyiodides Bipy · HIn with n = 3, 5, and 7 With simply protonated α,α′-Bipyridyl Bipy · H+ a triiodide Bipy · HI3, a pentaiodide Bipy · HI5 and a heptaiodide Bipy · HI7 may be prepared in the presence of iodide ions I? and dependent of the iodine I2 content. Bipyridiniumtriiodide C10H9N2I3 crystallizes at room temperature monoclinically in P21/n with a = 1 122.8(1) pm, b = 1 072.7(1) pm, c = 1 200.2(3) pm, β = 98.02(2)° and Z = 4. The crystal structure is built up from mixed cationic and anionic layers. Bipyridiniumpentaiodide C10H9N2I5 crystallizes at room temperature monoclinically in P21/c with a = 887.3(5) pm, b = 2 527.9(12) pm, c = 830.7(3) pm, β = 106.78(5)° and Z = 4. The crystal structure contains triiodide ions I3? till now uniquely connected by iodine molecules I2 in a trigonal planar way. Bipyridiniumheptaiodide C10H9N2I7 crystallizes at room temperature triclinically in P&1macr; with a = 713.1(3) pm, b = 1 007.9(3) pm, c = 1 464,8(4) pm, α = 81.07(3)°, β = 89.92(3)°, γ = 82.77(3)° and Z = 2. The crystal structure contains a V-shaped pentaiodide ion I5? completed by an iodine molecule I2 to a trigonal pyramidally shaped heptaiodide ion I7? and at the same time connected to a zigzag chain.  相似文献   

8.
On Coinage Metal Mercury Chalcogenide Halides. IV Hydrothermal Synthesis and Crystal Structure of CuHgSI and CuHg2S2I The hydrothermal reaction of CuI with α‐HgS in diluted aqueous HI‐solution as solvent at 180 °C yields dark red crystals of CuHgSI. The compound crystallizes orthorhombic in the space group Pna21 with a = 718.3(1) pm, b = 834.3(2) pm and c = 698.9(1) pm and Z = 4. CuHg2S2I was obtained by the hydrothermal reaction of CuI with α‐HgS in diluted HI‐solution at 300 °C as black crystals. The compound crystallizes orthorhombic in the space group Cmc21 with a = 1261.8(3) pm, b = 722.4(1) pm and c = 693.7(1) pm and Z = 4. Both crystal structures could be explained as distorted version of the Wurtzite structure type in which two different types of anion‐lattices are built up.  相似文献   

9.
NaNb6Cl15 is prepared by heating Nb3Cl8, NaCl and Nb under Ar at 1 170 < T [K] < 1 270 forming black regular dodecahedra. It crystallizes in the cubic space group Ia3 d (a = 2 041.7(2) pm at room temperature) and transforms to a tetragonal structure below 150 K (probably I41/acd, a = 2 037.2(6), c = 2 028.2(2) pm at 80 K). The Na+ ions are at room temperature dynamically disordered in a split position. Their mobility is investigated by IR spectroscopy and electrochemical methods.  相似文献   

10.
Studies on Polyhalides. 26. On N-Propylurotropinium Polyiodides UrPrIx with x = 5 and 7: Crystal Structures of a Pentaiodide and a Heptaiodide The salts UrPrIx with x = 5 and 7 are formed by the reaction of N-propylurotropinium iodide UrPrI with excess iodine I2 at room temperature from aqueous solution. N-propylurotropinium pentaiodide C9H19N4I5 crystallizes monoclinically in P21/n with a = 1007.6(3) pm, b = 1362.5(3) pm, c = 2899.0(9) pm, β = 91.49(3)º and Z = 8. The crystal structure is built up from parallel chains of cations UrPr+ and pairs of V-shaped pentaiodide anions I5? along [0 1 0]. N-propylurotropinium heptaiodide C9H19N4I7 crystallizes triclinically in P1 with a = 970.4(1) pm, b = 971.1(1) pm, c = 1357.8(2) pm, α = 106.83(1)º, β = 92.28(1)º, γ = 105.17(1)º and Z = 2. The crystal structure is stacked by alternating cationic and anionic double layers along [0 0 1]. The heptaiodide layer shows a two-dimensional network.  相似文献   

11.
Studies on Polypseudohalides. 3. Preparation and Crystal Structure of K[I(CN)2] · C6H12N2O2 The new compound K[I(CN)2] · C6H12N2O2, C8H12IKN4O2, may be prepared by reaction of an aqueous solution of potassium cyanide and an ethanolic solution of iodine cyanide at 255 K. The direct formation from the components potassium cyanide, iodine cyanide and diimino oxalic acid diethyl ester is possible in different solvents, too. The compound has been investigated by chemical analysis, spectroscopic methods and structural analysis based on single crystal X-ray data. At room temperature it crystallizes in the triclinic space group P1 (No. 2) with a = 428.5 pm, b = 925.9 pm, c = 1035.0 pm, α = 63.41°, β = 76.33°, γ = 78.58° and Z = 1. The compound may be described as a solvated salt built up by a potassium ion, a trihalide-analogous dicyanoiodate(I)-ion and a molecule C6H12N2O2. The anion (point symmetry 1 ) is nearly linear. The distance d(I? C) = 230.2 pm is lengthened compared with the corresponding distance in iodine cyanide. The geometry of the for the first time characterized molecule diimino oxalic acid diethyl ester is as expected. The crystal structure can be interpreted as a sequence of ionic and molecular layers along [0 1 0].  相似文献   

12.
The Unusual Transformation of P(SnMe3)3 to P4(SnMe2)6 The stannylated phosphine P(SnMe3)3 reacts in the presence of small amounts of [(ZnCl)2Fe(CO)4(THF)2] in THF (tetrahydrofurane) at room temperature forming insoluble P4(SnMe2)6 ( 1 ). This compound crystallizes as colourless needles directly from the reaction mixture (space group Cmcm, a = 1593.6(3) pm, b = 1118.2(2), c = 1602.5(3), Z = 4). Reaction of ZnCl2 with P(SnMe3)3 under the same reaction conditions leads to the complex [ZnCl2{P(SnMe3)3}THF] ( 2 ) (space group Pccn, a = 1593, 6(3) pm, b = 1118, 2(2), c = 1602, 5(3), Z = 8.  相似文献   

13.
Crystal Structure and Phase Transitions of As(CH3)4I The crystal structure of α-As(CH3)4I at room temperature was determined using single crystal data: cubic, space group Pa3 , a = 1 198.0(2) pm. Therefore α-As(CH3)4I displays a novel crystal structure, which is not comparable to known AB-Typ structures with respect to the arrangement of anions and the baricenters of the complex cations. Differential thermal analysis showed three phase transitions at 103, 175 and 215°C. The lattice parameters of the high temperature phases (temperature dependent Guinier measurements) are: β-As(CH3)4I (tetragonal): a = 845.2(2) pm, c = 615.0(2) pm; γ-As(CH3)4I (hexagonal): a = 737.7(2) pm, c = 1 082.2(3) pm; and to δ-As(CH3)4I (hexagonal): a = 705.8(2) pm, c = 1 147(1) pm. β-and γ-As[(CH3)]4I are isotypic to N(CH3)4Cl and As(CH3)4Br, respectively.  相似文献   

14.
Single crystals of [Fe(Cp)2]3(Bi2Cl9)·thf were obtained from a thf solution containing ferrocene and BiCl3. The structure shows disorder at room temperature which disappears upon cooling, coupled with a decrease in symmetry. The title compound crystallizes in the orthorhombic space group P212121 [a = 1698.64(2), b = 2318.69(3), c = 1085.66(2) pm] with three ferrocenium ions, one nonachlorodibismutate ion and one molecule of thf in the asymmetric unit.  相似文献   

15.
Crystal Structure, Conductivity, and Magnetic Susceptibility of Er2Te3 Via a chemical vapour transport reaction with ErCl3 as transporting agent, single crystals of Er2Te3 up to a size of 1.5 mm are available. X-ray structure analysis revealed for the compound the Sc2S3-type with the space group Fddd and the lattice parameters a = 1212.7(2) pm, b = 858.1(2) pm and c = 2572.8(4) pm (Z = 16). According to measurements of the fundamental absorption (DRIFT) the compound is a semiconductor with a band gap of 0.77(5) eV. Magnetic susceptibility measurements revealed paramagnetic behaviour in the temperature range 5–300 K with μp = 9.07 B.M. and θp = –4.3 K.  相似文献   

16.
17.
Structure, Twinning, and Properties of Ce4Br3C4 The new compound Ce4Br3C4 can be prepared from Ce metal, CeBr3 and C (3 : 3 : 2) at 1020 °C. It crystallizes in P 1 with a = 422.7(1) pm, b = 1103.4(3) pm, c = 1126.8(2) pm, α = 77.15(3)°, β = 90.13(2)° and γ = 84.42(3)°. The crystals are characteristically twinned, the twin law being (1 0 0, 1/2 –1 0, 0 0 –1). The crystal structure contains puckered layers of edge sharing Ce6C2 octahedra. The mean C–C distance in the C2 units is 133(5) pm. Ce4Br3C4 has at room temperature a specific resistivity of 100 mΩ cm and an effective magnetic moment of 2.55(3) μB (Ce3+).  相似文献   

18.
(Meta)stable CaC2 One out of four modifications of CaC2 is the so‐called metastable Calcium Carbide, CaC2‐III, which was synthesized as pure material. It forms by heating monoclinic CaC2‐II (C2/c) above 150 °C and remains stable after cooling down to room temperature. The structure was refined from X‐ray powder patterns (C2/m, Z = 4, a = 722.6(1) pm, b = 385.26(7) pm, c = 737.6(1) pm, β = 107.345(2)°). After grinding CaC2‐III transforms back into CaC2‐II. Heating CaC2‐III induces a reversible phase transition into the cubic modification (CaC2‐IV) at 460 °C. Differences between the three different structures of CaC2 I–III, being stable at ambient conditions are also shown by 13C‐MAS‐NMR measurements, especially the presence of two distinct types of carbon atoms in the structure of the title compound.  相似文献   

19.
Cs2LiLuCl6 (form II, metastable at room temperature) and Cs2KScCl6 were obtained as single crystals from reaction of CsLu2Cl7: Li = 1:1 and Cs3Sc2Cl9: K = 1:2 in arc-welded tantalum tubes at 500°C. They crystallize with the cubic face-centered K2NaAlF6-type structure (elpasolite, Fm3m, Z = 4) with a = 1040.9 pm, x(Cl) = 0.2483(4) [Cs2LiLuCl6-II] and a = 1087.3(3) pm, x(Cl) = 0.2263(6) [Cs2KScCl6].  相似文献   

20.
Studies on Polyhalides. 11 Preparation and Crystal Structure of Diethylmethylphenylammoniumtriiodide, Et2MePhNI3 Diethylmethylphenylammoniumtriiodide C11H18NI3 crystallizes at room temperature monoclinically with a = 824.1(2) pm, b = 1 428.5(2) pm, c = 1 430.0(2) pm, β = 103.17(3)° and Z = 4. The crystal structure is build up from layers of the quarternary ammonium ions Et2MePhN+ and of the triiodide ions I3?, which alternate with each other along [1 0 0]. The packing of these layers and of the groups within each layer seems to be particularly effective without forming noticeable short contact distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号