首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
研究了VectraA950/PEI共混体系多层次结构与共混体系动态流变特性的关系.在研究液晶高分子的动态流变特性时,引入Palierne模型对动态实验结果进行预测.结果表明,TLCP分散相在高频时偏离了球形,导致Palierne模型拟合的结果与TLCP/PEI共混体系的实验结果在高频时不吻合.这与VectraA950/PEI共混体系中多层次结构在动态流场中的流变响应有关:在频率偏高时,液晶高分子取向不能完全松弛,易于形成各向异性结构,在流场作用下,易产生大形变;由于液晶高分子液滴的回缩过程很慢,在频率偏高时,产生的大形变不易回复,所以保留了纤维结构.  相似文献   

2.
The linear regime (LR) of viscoelastic behavior has been found to be limited to rather small values of strain, well below the strains found in many technological processes. A Fourier-transform method is described for analyzing the surface rheology data obtained in insoluble Langmuir polymer monolayers beyond the LR. In the concentrate regime, the monolayers show a transition from elastic to plastic behavior, which is characterized by high irreversibility. A simple 2-D rubber model is presented that describes the behavior of the monolayers in the non-linear region not too far from the end of the LR.  相似文献   

3.
The structure and viscoelastic properties of fumed silica gels in dodecane were studied by means of dynamic rheology. With increasing the specific surface area of fumed silica nanoparticles, the plateau elastic modulus (G′), which is frequency-independent and shows the characteristic of a network of the fumed silica gels, decreases. Such networks of fumed silica gels show a significant temperature-dependent behavior and a transition temperature (T c) related with the restructuring of nanoparticle chain aggregates of fumed silica in gels. Under oscillatory shear, the fumed silica gels experience disorganization and reorganization and present strong structural recovery ability after adjusting oscillatory shear (AOS) at small strain amplitudes (1–10%), and a more perfect network structure than that in origin gels can be induced. Elevated temperature (above T c) improves the network structure to be more compact and stronger than that at a lower temperature, as a result, the deformation resistance during the AOS period and the structural recovery after AOS are enhanced. These results indicate that the network structure and viscoelastic properties of fumed silica gels can be tailored and optimized by performing small-amplitude oscillatory shear at a properly selected temperature.  相似文献   

4.
Irreversible deformation of isotactic polypropylene in the pre-yield regime   总被引:1,自引:0,他引:1  
In the modeling of the mechanical response of a polymer over a large strain range, the nonlinear viscoelastic and viscoplastic behavior must be considered. For many polymers, nonlinear behavior is observed at low loads, e.g. by a stress-dependence of the creep compliance for stresses above 2 MPa in case of the polypropylene used in this study. Additionally, plastic deformation has been observed at strains below the yield point for several polymers. In this study, the irreversible deformation by cavitation and shear yielding of polypropylene are characterized in the pre-yield regime in uniaxial tensile tests using digital image correlation. The recovery of strain after unloading at a prescribed strain level is measured and used to identify the evolution of the plastic strain during uniaxial tension. An experimental technique for simultaneous determination of the true stress–true strain curve and the degree of stress whitening, which relates to the amount of cavitation, is introduced and the initiation of cavitation is compared to the plastic deformation detected in strain recovery at various temperatures.  相似文献   

5.
Blends of polyarylate of bisphenol A, PAr, with two commercial main chain liquid crystalline polymers, Vectra A950 and Vectra B950, are studied. From dynamic viscoelastic measurements it is deduced that both systems (PAr/Vectra A950 and PAr/Vectra B950) are immiscible and scanning electron microscopy (SEM) micrographs show the presence of spherical domains of the liquid crystalline polymer when PAr constitutes the matrix. Extrusion capillary measurements reveal that, under conditions of temperature and shear rate similar to those of processing, the viscosity is reduced to approximately 10% of its value when the content of liquid crystalline polymer is only 20%. This great improvement of the rheological properties is observed in both PAr/Vectra A950 and PAr/Vectra B950 blends. The effect of draw ratio on Young's modulus for different compositions is also analyzed, pointing out the reinforcing action of both liquid crystalline polymers on polyarylate: for instance, 20% of Vectra B950 in the blend gives rise to a 700% increase of the modulus of fibres prepared at a draw ratio of 50. SEM of the extrudates reveals that the spherical domains are elongated at the entrance of the capillary giving rise to a microfibrillar morphology which is related to the excellent rheological and mechanical properties of the blends.  相似文献   

6.
The shear and dilatational rheology of condensed interfacial layers of the water-insoluble surfactant sorbitan tristearate at the air/water interface is investigated. A new interfacial shear rheometer allows measurements in both stress- and strain-controlled modes, providing comprehensive interfacial rheological information such as the interfacial dynamic shear moduli, the creep response to a stress pulse, the stress relaxation response to a strain step, or steady shear curves. Our experiments show that the interfacial films are both viscoelastic and brittle in nature and subject to fracture at small deformations, as was supported by in-situ Brewster angle microscopy performed during the rheological experiments. Although any large-deformation test is destructive to the sample, it is still possible to study the linear viscoelastic regime if the deformations involved are controlled carefully. Complementary results for the dilatational rheology in area step compression/expansion experiments are reported. The dilatational behavior is predominantly elastic throughout the frequency spectrum measured, whereas the layers exhibit generalized Maxwell behavior in shear mode within a deformation frequency regime as narrow as two decades, indicating the presence of additional relaxation mechanisms in shear as opposed to expansion/compression. If the transient rheological response from stress relaxation experiments is considered, then the data can be described well with a stretched exponential model both in the shear and dilatational deformations.  相似文献   

7.
4-(3,5-dioxo-1,2,4-triazolidin-4-yl) benzole (U4A) or -isophthalic acid (U35A) units randomly attached to a polybutadiene backbone form extended supramolecular hydrogen bond assemblies, which act as effective junction zones in unusual thermoreversible elastomer networks. The relaxation behavior of stress and the segmental orientation induced after a sudden strain, has been investigated by means of step-strain experiments and 2H-NMR spectroscopy.The stress relaxation behavior can be described as a two-step process in which the first step is very sensitive to the stability of the supramolecular aggregates. About 20 s after reaching the initial strain, stress is reduced to a value comparable to the yield-stress in stress-strain cycles. The long-time relaxation behavior is interpreted as a reduction of the effective cross-link density due to a gradual breakdown of the hydrogen bond clusters. The relaxation data of the functionalized polybutadienes can be superimposed to give master curves, which are characteristic for the type of junction zone. The degree of aggregate degradation is estimated as a function of the initial stress.In the same type of step-strain experiment, the 2H-NMR spectra show a decay of the line splitting as well as a change in the complete lineshape.  相似文献   

8.
童真 《高分子科学》2015,33(1):70-83
Linear and nonlinear viscoelasticity of gelatin solutions was investigated by rheology. The dynamic mechanical properties during the sol-gel transition of gelatin followed the time-cure superposition. The fractal dimension df of the critical gel was estimated as 1.76, which indicated a loose network. A high sol fraction ws = 0.61 was evaluated from the plateau modulus by semi-empirical models. Strain-stiffening behavior was observed under large amplitude oscillatory shear(LAOS) for the gelatin gel. The strain and frequency dependence of the minimum strain modulus GM, energy dissipation Ed, and nonlinear viscoelastic parameter NE was illustrated in Pipkin diagrams and explained by the strain induced helix formation reported previously by others. The BST model described the strain-stiffening behavior of gelatin gel quite well, whereas the Gent and worm-like chain network models overestimated the strain-stiffening at large strains.  相似文献   

9.
A second-order drop deformation method for inferring interfacial tension between two immiscible polymers is proposed and shown to improve the accuracy of tension estimate appreciably. A small step-strain method, which uses a strong flow (capillary number >1) and short flow time approximately O(0.1s), is successfully developed to avoid complications caused by the surfactants for surfactant-laden drops. This method is demonstrated to give good tension estimates for a range of viscosity ratios and surface coverage.  相似文献   

10.
The interfacial rheology of sorbitan tristearate monolayers formed at the liquid/air interface reveal a distinct nonlinear viscoelastic behavior under oscillatory shear usually observed in many 3D metastable complex fluids with large structural relaxation times. At large strain amplitudes (gamma), the storage modulus (G') decreases monotonically whereas the loss modulus (G') exhibits a peak above a critical strain amplitude before it decreases at higher strain amplitudes. The power law decay exponents of G' and G' are in the ratio 2:1. The peak in G' is absent at high temperatures and low concentration of sorbitan tristearate. Strain-rate frequency sweep measurements on the monolayers do indicate a strain-rate dependence on the structural relaxation time. The present study on sorbitan tristearate monolayers clearly indicates that the nonlinear viscoelastic behavior in 2D Langmuir monolayers is more general and exhibits many of the features observed in 3D complex fluids.  相似文献   

11.
The effects of repeated large strain shear cycles on the dynamics of a glassy acrylate polymer are investigated using an original contact method. It is based on the measurement of the shear properties of thin (about 50 μm) polymer films geometrically confined within contacts between elastic substrates. Under small amplitude (300 nm–10 μm) oscillating lateral displacements, friction at the contact interface can be neglected and the measurement of the contact lateral response thus provides information about the rheology of the sheared polymer film. Using this approach, the complex shear modulus of the polymer film can be measured both in the linear (viscoelastic) and in the nonlinear regimes. The investigations are focused on the changes in mechanical properties induced in a large strain regime where the polymer glass is cyclically sheared up to the yield point. During the application of large strain cycles, the mechanical response of the polymer glass slowly evolves toward a quasi stabilized state which is described from the measurement of an apparent–strain dependent–complex shear modulus. When the applied strain is increased by a tenfold factor, this apparent shear modulus decreases by about one decade. These underlying changes are investigated from a consideration of the time dependent linear viscoelastic properties after the mechanical stimulus. Both mechanical rejuvenation and recovery (ageing) effects are evidenced. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
The rheological properties of two model suspensions using a Newtonian polymeric matrix are presented and discussed in light of results presented in the literature. It is shown that particle-particle interactions in concentrated suspensions are responsible for a gel-type behavior at very small strain and strain hardening at a critical strain. Suspensions of concentrated colloidal particles in a Newtonian matrix behave like typical viscoelastic molten polymers, but the properties are strongly dependent on the solids dispersion, and strain at small strain. A simple rheological model is proposed to describe the shear viscosity of these suspensions.  相似文献   

13.
Double‐network (DN) gels subjected to cyclic deformation (stretching up to a fixed strain followed by retraction down to the zero stress) demonstrate a monotonic decrease in strain with time (self‐recovery). Observations show that the duration of total recovery varies in a wide interval (from a few minutes to several days depending on composition of the gel), and this time is strongly affected by deformation history. A model is developed for the kinetics of self‐recovery. Its ability to describe stress–strain diagrams in cyclic tests with various periods of recovery is confirmed by comparison with observations on several DN gels. Numerical simulation reveals pronounced enhancement of fatigue resistance in multi‐cycle tests with stress‐ and strain‐controlled programs when subsequent cycles of deformation are interrupted by intervals of recovery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 438–453  相似文献   

14.
15.
The recovery properties of dry and water saturated polyamide 6 (PA6) and its copolymer PA6/66 (ratio 4:1 by mol) were studied at elevated temperatures above the glass‐transition temperature in uniaxial tensile tests. The data yield critical points along the true stress–strain curves at which the differential compliance and the recovery property change. These critical points include the onset of the plastic deformation (point A), the yield point (B), and the point where the elasticity of the samples reaches a plateau value (C). The strains at points A and B remain constant, whereas the strain at point C varies with temperature. The invariance of the critical strains at points A and B is assumed to be the result of the homogeneous strain distribution in the system and the general activation of the intralamellar block slip mechanism at low deformations. The strain at point C, being related to the properties of the entangled network, varies because the effective entanglement density of the network changes due to the change in the hydrogen bond number with temperature. With the Gaussian model of Haward and Thackray, we calculated the network moduli. From these data, we derived that the network stress remains constant at point C. At point C, the deformation mechanism starts to change from the block slip mechanism to a stress‐induced melting–recrystallization process. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 87–96, 2005  相似文献   

16.
Saturated monoglycerides can form firm gels in water. These gels are networks of stiff plate-like beta-crystals of monoglycerides (a "cardhouse"), grown from a space-filling lamellar liquid-crystalline phase. The molecular mechanism of crystallization is discussed in the light of network formation. The concentration dependence of gel development of (shear-cooled) monoglyceride gels has been studied by rheology. A gelation mechanism has been proposed, consisting of two steps: (i) After formation of a nucleus, rapid crystallization in a lateral direction occurs (probably within one bilayer) by which the first space-filling network is formed. (ii) This is followed by reinforcement of the network by which stacks of crystalline bilayers are formed. The plate-like crystals are linked in connective domains or junction zones, probably containing all the material (cosurfactants, diglycerides, etc.) that does not fit in the crystalline array. Small deformation rheology shows that above about 2 wt% monoglyceride a percolating network is formed. The large deformation rheology is typical for a particle gel with a relatively small strain at failure (both in shear deformation and compression). The connective domains or junction zones already fail when relatively small deformations are put on the system.  相似文献   

17.
The repulsive forces between a glass sphere and immobilized colloidal droplets of poly(dimethylsiloxane) (PDMS) (with various levels of internal cross-linking) have been determined in aqueous solution using colloid probe atomic force microscopy. On initial surface approach, droplet deformation is negligible and interaction forces resemble those expected for electrical double layer interaction of rigid spheres. Upon further approach, droplet flattening results in forces that deviate below rigid body electrical double layer interaction. The extent of droplet deformation has been determined in terms of the deviation from hard-sphere interaction. Droplet deformability is strongly dependent on the droplet cross-linking level and hence controlled by some combination of the bulk rheological and interfacial properties of the droplets. Droplet nano-rheology has been determined from the extent of force curve hysteresis. For liquidlike droplets, with low levels of cross-linking, no force curve hysteresis is observed and the elastic deformation may be described by a single spring constant, which is controlled by the interfacial properties. For highly cross-linked droplets, the extent of deformation is controlled by the droplet's bulk rheology rather than the interfacial properties. Upon retraction of the surfaces, force curve hysteresis is observed and is due to the viscoelastic response of the PDMS. The extent of hysteresis is dependent on the rate of approach/retraction and the loading force and has been theoretically analyzed to determine nano-rheological parameters that describe droplet relaxation processes. Elastic moduli and relaxation times of the PDMS droplets vary over several orders of magnitude as a function of cross-linking.  相似文献   

18.
Nonelastic deformation of semicrystalline poly(butylene terephtalate) (PBT) was investigated by calorimetric measurements and strain‐recovery tests. Differential scanning calorimetry on PBT specimens deformed both below and above their glass‐transition temperature (Tg ≈ 50 °C) showed the presence of a broad exothermal peak whose area represents the energy released for the nonelastic strain recovery. This energy became more and more pronounced as the strain level increased, and it decreased as the deformation temperature increased, even if a significant contribution was detected on specimens deformed at temperatures much higher than Tg. For two temperature conditions (21 and 100 °C), strain‐recovery master curves were built showing the following two distinct deformation components: one recoverable with time and another one irreversible, this latter one arising from relatively low levels of strain. The recoverable component can be erased by heating the material at temperatures much higher than its Tg, close to the onset of the melting process. On the other hand, the irreversible strain component does not recover even if the material is brought close to the onset of the crystals melting. The shift factor for the strain‐recovery master curves was compared with the shift factor for the construction of the dynamic storage modulus master curve obtained in the linear viscoelastic regime (small strain). © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 236–243, 2002  相似文献   

19.
Inverse relaxation is studied for hard elastic polypropylene (HEPP), rubber and non-elastic polypropylene. The results show that contractive stress, stress, and internal friction are three essential factors related to the phenomenon. A three-element model in which each element has a definite meaning is proposed to describe this phenomenon. The results also show that, in the first cyclic deformation, relaxation time increases with the increase of recovery for all the materials, which indicates that recovery viscosity increases with the increase of recovery, but the stress rising amplitude (SRA) of inverse relaxation has a maximum in the recovery range. Analysis indicates that SRA equals recovery internal friction (RIF) for ideal material in which stress is solely a function of strain, independent of paths, and approximately equals RIF for non-ideal material at a given strain. From this principle it is found that the order of the work counteracted by RIF for the four materials is the same as that of their second hysteresis loop, and the RIF of HEPP has a sudden increase at the later recovery range.  相似文献   

20.
The present paper is concerned with the experimental and theoretical investigation of the progressive accumulation of inelastic deformation observed in cyclic tension tests performed on a particular polyamide. The elastic properties are not strongly affected by the strain rate, but the strain hardening induced by the plastic deformation is rate-dependent. Thus, the material behaviour is elasto-viscoplastic rather than viscoelastic or elasto-plastic. For the polymer studied in this paper, the kinematic hardening is much more significant than the isotropic hardening, and a negative plastic strain rate may occur even with a positive stress. The kinematic hardening is strongly dependent, not only on the accumulated plastic strain, but also on the loading rate. An elasto-viscoplastic mechanical model able to describe the cyclic inelastic behaviour for an arbitrary loading history is proposed. All parameters that arise in the theory are identified experimentally. The preliminary theoretical results concerning the modelling of cyclic load-unload tests are in good agreement with the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号