首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of rigid poly(p-phenylene pyromellitimide) (PMDA-PDA) and semi-rigid poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA), prepared by thermal imidization of the respective poly(amic acid) and poly(amic ethyl ester) precursors, were characterized with respect to their optical, thermomechanical and structural properties. Both polyimides exhibit an unusually large anisotropy between the in-plane and out-of-plane refractive indices, with n ranging from 0.198 to 0.216 for PMDA-PDA and from 0.230 to 0.242 for BPDA-PDA, nearly independent of the nature of the initial polyimide precursor, film thickness, and film preparation method. PMDA-PDA films exhibit low coefficients of thermal expansion (CTE's) of 6.5 and 8.2 ppm/C for the acid-derived and the ester-derived polyimides, respectively. In comparison, the BPDA-PDA films show CTE values of 4.3 and 18.0 for the acid-derived and ester-derived samples, respectively, despite the small differences in their optical anisotropies. Wide-angle x-ray diffraction patterns obtained in reflection and transmission for the various samples reveal a strong in-plane chain orientation for both PMDA-PDA and BPDA-PDA polyimides, with somewhat better intermolecular packing order for the ester-derived polyimide films. These effects of chemical structure and precursor on properties and structures of the polyimide films are discussed in light of recent theoretical considerations of semiflexible polymers.Dedicated to Prof E. W. Fischer on the occasion of his 65th birthday  相似文献   

2.
The photosensitive poly(p-phenylene biphenylteracarboximide) (BPDA-PDA) precursor was synthesized by attaching photocross-linkable 2-(dimethylamino)ethyl methacrylate (DMAEM) monomer to its poly(amic acid) through acid/base complexation. The polyimide thin films were prepared by a conventional cast/softbake/thermal imidization process from the photosensitive precursors with various concentrations of DMAEM. The structure and properties of the polyimide films were investigated by small-angle and wide-angle x-ray scattering, refractive indices and birefringence analysis, residual stress and relaxation analysis, stress-strain analysis, and dynamic mechanical thermal analysis. In comparison with the polyimide film from the poly(amic acid), the films, which were imidized from the photosensitive precursors, exhibited a better molecular order and microstructure; however, they exhibited less molecular orientation in the film plane. Despite the enhancement in both the molecular order and microstructure, the film properties (i.e., mechanical properties, thermal expansion, residual stress, optical properties, dielectric constant, and water sorption) degraded overall due to both the decrease in molecular in-plane orientation and the formation of microvoids caused by the bulky photosensitive group during thermal imidization. That is, on one hand, the PSPI precursor formation provides an advantageous, direct patternability to the BPDA-PDA precursor, and on the other hand, it results in degraded properties to the resulting polyimide film. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Thin films of poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA), prepared by thermal imidization of the precursor poly(amic acid) on substrates, have been investigated by optical waveguide, ultraviolet-visible (UV-VIS), infrared (IR), and dielectric spectroscopies. The polyimide films exhibit an extraordinarily large anisotropy in the refractive indices with the in-plane index n = 1.806 and the out-of-plane index n = 1.589 at 1064 nm wavelength. No discernible effect of the film thickness on this optical anisotropy is found between films of ca. 2.1 and ca. 7.8 μm thickness. This large birefringence is attributed to the preferential orientation of the biphenyltetracarboximide moieties with their planes parallel to the film surface, coupled with the strong preference of BPDA-PDA chains to align along the film plane. The frequency dispersion of the in-plane refractive index n is consistent with the results calculated by the Lorentz–Lorenz equation from the UV-visible spectrum exhibiting several absorption bands in the 170–500 nm region. The contribution from the IR absorption in the range 7000–400 cm,?1 computed by the Spitzer-Kleinmann dispersion relations from the measured spectra, adds ca. 0.046 to the in-plane refractive index n. Tilt-angle–dependent polarized IR results indicate nearly the same increase for the out-of-plane index n. Application of the Maxwell relation then leads to the out-of-plane dielectric constant ε ? 2.7 at 1.2 × 1013 Hz, as compared with the measured value of ca. 3.0 at 106 Hz. Assuming this small difference to remain the same for the in-plane dielectric constants ε, we obtain a very large anisotropy in the dielectric properties of these polyimide films with the estimated in-plane dielectric constant ε ? 3.4 at 1.2 × 1013 Hz, and ε ? 3.7 at 106 Hz. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Poly(amic acid) (PAA) and poly(amic diethyl ester) (PAE) precursors of poly(4,4′-oxydiphenylene biphenyltetracarboximide) (BPDA-ODA PI) were synthesized. Miscibility behaviors of these precursors with poly(arylene ether benzimidazole) (PAEBI), which is a good adhesion primer for copper metal, were investigated in N-methyl-2-pyrrolidone (NMP) as well as the condensed state and the imidized state. For the PAA/PAEBI blend over the whole range of compositions, no cloud point was measured either in the NMP solution, the condensed state, or the imidized state. Furthermore, no aggregation of PI chains in the blend films was detected by X-ray diffraction. These results indicate that the PAA and PAEBI are completely miscible at the molecular level, consequently leading to the miscible PI/PAEBI blend. This miscibility might result from the strong interaction via the complex formation of imidazole groups of the PAEBI and carboxylic acid groups of the PAA precursor. In contrast, the miscibility of PAE/PAEBI blend in NMP was limited up to a concentration of 13.5–36.3 wt %, leading to a phase separation in the soft-baked and imidized blend. The blend films rich with one component were optically transparent, which might be due to the phase-separated domains much smaller than 1 μm. The immiscibility might result from the relatively weak interactions of imidazole groups of PAEBI with both the ester and amide linkages in the PAE precursor. The difference in the miscibilities of PAEBI with the PAA and PAE precursors was reflected in the adhesion of PI/PAEBI/copper joints: higher miscibility gave higher adhesion strength. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2806–2814, 1999  相似文献   

5.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

6.
The mechanical properties, i.e., Young's modulus, elongation, and tensile stress, were determined as functions of the molecular weight for films of poly(oxydi-p-phenylene pyromellitimide) prepared by thermal cyclization of the precursor poly(amic acid). The molecular weights of the samples were controlled by the monomer stoichiometry employed for the solution condensation of pyromellitic dianhydride and p,p′-oxydianiline. Weight-average molecular weights were determined by light scattering of the precursor poly(amic acid) as well as the fully cyclized polyimide. The elongation-at-break is most sensitive to the molecular weight, undergoing a rapid increase at M w ? 8000 and reaching a limiting value of about 60% for M w > 20,000.  相似文献   

7.
Preparation of a polyimide nanofoam (PI‐F) for microelectronic applications was carried out using a polyimide precursor synthesized from poly[(amic acid)‐co‐(amic ester)] and grafted with a labile poly(propylene glycol) (PPG) oligomer. Polyimide precursor was synthesized by partial esterification of poly(amic acid) (PAA) derived from pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA). The precursor was then grafted with bromide‐terminated poly(propylene glycol) in the presence of K2CO3 in hexamethylphosphoramide and N‐methylpyrrolidone, imidized at 200°C in nitrogen and the product was subsequently decomposed in air at 300°C to eliminate the labile PPG oligomer to produce PMDA/ODA polyimide nanofoam. Nuclear magnetic resonance spectroscopy (1H‐NMR) and Fourier transform infrared spectroscopy (FT‐IR) techniques were used to characterize the formation of polyimide precursor and extent of grafting of PPG with polyimide. The results of thermogravimetric analysis (TGA) showed three step decomposition of nanofoam with the removal of PPG at 350°C and decomposition of polyimide at around 600°C. The polyimide nanofoams were also characterized by small angle X‐ray scattering (SAXS), field‐emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The morphology showed nanophase‐separated structures with uniformly distributed and non‐interconnected pores of 20–40 nm in size. Dynamic mechanical analysis (DMA) indicated higher storage modulus for the foamed structure compared to the pure PI with reduction in loss tangent for the former system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Binary mixtures of a rodlike poly(p-phenylene pyromellitimide) (PMDA-PDA) and a flexible 6F-BDAF polyimide synthesized from hexafluoroisopropylidene diphthalic anhydride and 2,2-bis(4-aminophenoxy-p-phenylene) hexafluoropropane were prepared by solution-blending of the meta-PMDA-PDA poly(amic ethyl ester) and 6F-BDAF poly(amic acid) precursors, followed by solvent evaporation and thermal imidization. Mixtures containing different molecular weights of 6F-BDAF poly(amic acid) were studied. The size scale of the phase separation, as measured by light scattering, is ca. 1 μm or smaller in most cases. The domain size is primarily set by the demixing of the precursor polymers during solvent evaporation, with no significant coarsening observed during the thermal imidization. The observed variation of the domain size with molecular and process parameters such as composition, molecular weight, and film thickness is discussed in terms of the miscibility of the precursor polymers, rate of solvent evaporation, and solidification. Dynamic mechanical thermal analysis and dielectric relaxation measurements indicate that the glass transition temperature of 6F-BDAF is unaffected in all of the mixtures studied, indicating complete demixing of rodlike and flexible polyimides in agreement with theory. X-ray photoelectron spectroscopy results show a strong surface segregation of 6F-BDAF in mixtures containing as low as 10% by weight of the 6F-BDAF component in the bulk. The mixtures with PMDA-PDA as the major matrix component therefore exhibit excellent mechanical toughness, dimensional stability up to 500°C, low coefficients of thermal expansion (< ca. 10 ppm/°C), and low dielectric constants (<3.0). On the other hand, the surface properties of the mixtures are dominated by the flexible 6F-BDAF, resulting in excellent polymer/polymer self-adhesion (lamination) properties between fully imidized films.  相似文献   

9.
Poly(p-phenylene biphenyltetracarboximide) films with various thicknesses were prepared from the poly(amic acid) precursor by thermal imidization at 230–400°C for 1–10 h under a nitrogen atmosphere. The water sorption in the films was measured at 25°C over 22–100% relative humidity using a Cahn microbalance as a function of film thickness and thermal imidization history. The water diffusion in all the films followed nearly Fickian process despite the morphological heterogeneity due to the ordered and less ordered phases. The diffusion coefficient and water uptake varied in 0.85 × 10?10 ? 7.50 × 10?10 cm2/s and 0.12–2.4 wt %, respectively, depending upon humidity, film thickness, and imidization history. Both diffusion coefficient and water uptake increased with increasing humidity, but decreased as imidization temperature and time increased. With increasing film thickness, the diffusion coefficient increased whereas the water uptake decreased. The water sorption behavior was interpreted with the consideration of morphological variations, such as polymer chain order, in-plane orientation, and intermolecular packing order due to the film thickness and imidization history. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
4,4′-Diaminodiphenylacetylene (p-intA) was reacted with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) in N-methyl-2-pyrrolidone (NMP) to give poly(amic acid) solution of moderate to high viscosity. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting unit. Polyimide having acetylene units that are linked meta to the aromatic connecting unit also was prepared utilizing 3,3′-diaminodiphenylacetylene (m-intA) for comparison. The crosslinking behavior of the acetylene units was observed with DSC. Exotherm due to the crosslinking of the para-linked acetylene units appeared at ca. 340 to 380°C depending on the structure of polyimide, whereas meta-linked acetylene units appeared at lower temperature as 340–350°C. After thermal treatment at high temperature such as 350 or 400°C, the amount of the exotherm became smaller and finally disappeared on DSC, confirming the progress of crosslinking. Dynamic mechanical properties of the polyimide films show that glass transition temperature increased with higher heat treatment, also confirming the progress of crosslinking. Tensile properties of the polyimide films showed that rigid polyimide films consisting of p-intA with BPDA or PMDA have considerably higher modulus than those consisting of m-intA. Cold-drawing of the poly(amic acid) followed by imidization gave much higher modulus in the case of rigid polyimide. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2395–2402, 1997  相似文献   

12.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

13.
ABSTRACT

In order to better understand the influences of polyimide (PI) skeleton structure and freeze-drying process on the properties of PI aerogel materials, PI molecular chains (ODPA-ODA, BPDA-ODA, BPDA-PPDA) with different stiffnesses and flexibilities were designed and a series of PI aerogels were accordingly fabricated by freeze-drying technique. The aerogels produced featured light weight (density of 0.01–0.16 g/cm3) and high flexibility, and their density, pore structure, and compress recovery performance could be well controlled by delicately tuning the molecular chain structure and solid contents of the poly (amic acid) salt solution. In addition, a hard PI aerogel with enhanced compressive strength was obtained by quick-freezing in liquid nitrogen.  相似文献   

14.
Polyimide thin films were synthesized from 3,3′,4,4′‐biphenyltetracarboxylic acid dianhydride (BPDA) and four different diamines (p‐phenylene diamine, 4,4′‐oxydiphenylene diamine, 4,4′‐biphenylene diamine, and 4,4′‐sulfonyldiphenylene diamine). The nanoindentation behavior of the resulting polyimides, namely, poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA), poly(4,4′‐biphenylene biphenyltetracarboximide) (BPDA‐BZ), poly(4,4′‐oxydiphenylene biphenyltetracarboximide) (BPDA‐ODA), and poly(4,4′‐sulfonyldiphenylene biphenyltetracarboximide) (BPDA‐DDS), were investigated. Also, the morphological properties were characterized with a prism coupler and wide‐angle X‐ray diffraction and were correlated to the nanoindentation studies. The nanoindentation behavior and hardness varied quite significantly, depending on the changes in the chemical and morphological structures. The hardness of the polyimide thin films increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐BZ < BPDA‐PDA. For all the polyimide thin films, except that of BPDA‐BZ, the hardness decreased with an increase in the load. The birefringence, a measure of the molecular in‐plane orientation, increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐PDA < BPDA‐BZ. The X‐ray diffraction studies revealed that the crystallinity of the polyimide thin films varied with the changes in the chemical structure. The studies showed that the indentation response with an applied load and the hardness by nanoindentation for the BPDA‐based polyimides were closely related to the morphological structure. The nanoindentation and birefringence results revealed that the mechanical properties of the polyimide thin films were dependent on the crystallinity, which arose because of the chain order along the chain axis and the molecular packing order. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 861–870, 2004  相似文献   

15.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   

16.
A soluble poly(amic acid) precursor solution of fully rod-like poly(p-phenylene pyromellitimide) (PMDA-PDA) was spin cast on silicon substrates, followed by soft bake at 80–185°C and subsequent thermal imidization at various conditions over 185–400°C in nitrogen atmosphere to be converted to the polyimide in films. Residual stress generated at the interface was measured in situ during imidization. In addition, the imidized films were characterized in the aspect of polymer chain orientation and ordering by prism coupling and X-ray diffraction. The soft-baked precursor film revealed a residual stress of 16–28 MPa at room temperature, depending on the soft bake condition: higher temperature and longer time in the soft bake gave higher residual stress. The stress variation in the soft-baked precursor film was not significantly reflected in the final stress in the resultant polyimide film. However, the residual stress in the polyimide film varied sensitively with variations in imidization process parameters, such as imidization temperature, imidization steps, heating rate, and film thickness. The polyimide film exhibited a wide range of residual stress, −7 MPa to 8 MPa at room temperature, depending on the imidization condition. Both rapid imidization and low-temperature imidization generated high stress in the tension mode in the polyimide film, whereas slow imidization as well as high temperature imidization gave high stress in the compression mode. Thus, a moderate imidization condition, a single- or two-step imidization at 300°C for 2 h with a heating rate of < 10 K/min was proposed to give a relatively low stress in the polyimide film of < 10 μm thickness. However, once a precursor film was thermally imidized at a chosen process condition, the residual stress–temperature profile was insensitive to variations in the cooling process. All the films imidized were optically anisotropic, regardless of the imidization history, indicating that rod-like PMDA-PDA polyimide chains were preferentially aligned in the film plane. However, its degree of in-plane chain orientation varied on the imidization history. It is directly correlated to the residual stress in the film, which is an in-plane characteristic. For films with residual stress in the tension mode, higher stress films exhibited lower out-of-plane birefringence, that is, lower in-plane chain orienta-tion. In contrast, in the compression mode, higher stress films showed higher in-plane chain orientation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1261–1273, 1998  相似文献   

17.
A polyimide hybrid with montmorillonite clay mineral has been synthesized from a dimethylacetamide (DMAC) solution of poly(amic acid) and a DMAC dispersion of montmorillonite intercalated with an ammonium salt of dodecylamine. Montmorillonite consists of stacked silicate sheets about 2000 Å in length, 10 Å in thickness. In this hybrid, montmorillonite is dispersed homogeneously into the polyimide matrix and oriented parallel to the film surface. Thanks to this special structure, this hybrid showed excellent gas barrier properties. Only 2 wt % addition of montmorillonite brought permeability coefficients of various gases to values less than half of those of ordinary polyimide. Furthermore, this hybrid had low thermal expansion coefficient. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
New routes for the synthesis of high Tg thermally stable polymer foams with pore sizes in the nanometer regime have been developed. Foams were prepared by casting well-defined microphase-separated block copolymers comprised of a thermally stable block and a thermally labile material. At properly designed volume fractions the morphology provides a matrix of the thermally stable material with the thermally labile material as the dispersed phase. Upon thermal treatment, the thermally unstable block undergoes thermolysis generating pores, the size and shape of which are dictated by the initial copolymer morphology. Triblock copolymers comprised of a high Tg, amorphous polyimide matrix with poly(propylene oxide) as the thermally decomposable coblock, were prepared. The copolymer synthesis was conducted through the poly(amic acid) precursor and subsequent cyclodehydration to the polyimide by either thermal or chemical means. Dynamic mechanical analysis confirmed microphase separated morphologies for all copolymers, irrespective of the propylene oxide block lengths investigated. Upon decomposition of the thermally labile coblock, a 9–18% reduction in density was observed, consistent with the generation of a foam which was stable to 400°C. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

20.
The effect of high boiling point solvent on the residual stress behaviors of semiflexible structure poly(4,4′‐oxydiphenylene pyromellitimide) (PMDA‐ODA) and pseudo‐rodlike poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA) polyimide was investigated. As a solvent, a mixed solution of 20 wt % cyclohexyl‐2‐pyrrolidone (CHP; bp = 307 °C) and 80 wt % n‐methyl‐2‐pyrrolidone (NMP; bp = 202 °C) was used. The effects of solvent system and imidizing history on the morphological structure, as well as residual stress, were significantly high in the BPDA‐PDA having high chain rigidity, but relatively low in the semiflexible PMDA‐ODA with low chain rigidity. In addition, rapidly cured films prepared from PAA (NMP/CHP) showed higher residual stress and a lower degree of molecular anisotropy than slowly cured film imidized from PAA (NMP). This was induced by high chain mobility in polyimide thin films prepared from PAA (NMP/CHP) during the thermal cure process. Therefore, molecular anisotropy, depending on the solvent system and imidizing history, might be one of the important factors leading to low residual stress in polyimide thin films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2879–2890, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号