首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl‐methyl cross‐radical reaction: (1) CH3 + C2H3 → Products. The measurements were performed in a discharge flow system coupled with collision‐free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 < [CH3]0/ [C2H3]0 < 21. The overall rate coefficient was determined to be k1(298 K) = (1.02 ± 0.53) × 10−10 cm3 molecule−1 s−1 with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100–300 Torr He) and to a very recent study at low pressure (0.9–3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C3H5 as products of the combination‐stabilization, disproportionation, and combination‐decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination‐decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C‐H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 304–316, 2000  相似文献   

3.
Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.  相似文献   

4.
The reaction of electronically excited singlet methylene (1CH2) with acetylene (C2H2) was studied using the method of crossed molecular beams at a mean collision energy of 3.0 kcal/mol. The angular and velocity distributions of the propargyl radical (C3H3) products were measured using single photon ionization (9.6 eV) at the advanced light source. The measured distributions indicate that the mechanism involves formation of a long-lived C3H4 complex followed by simple C-H bond fission producing C3H3+H. This work, which is the first crossed beams study of a reaction involving an electronically excited polyatomic molecule, demonstrates the feasibility of crossed molecular beam studies of reactions involving 1CH2.  相似文献   

5.
Shock tube experiments on the decay of OH-radical concentration after shock-initiated combustion of H2:O2:Ar = 10:1:89 mixtures were analyzed to give the rate constant 1 × 1015 cm6mol?2s?1for the reaction H + H + Ar = H2 + Ar overthe temperature range 1300 to 1700 K.  相似文献   

6.
The hydrogen atom abstraction reaction of Cl (2P3/2) with ethane has been studied using the crossed molecular beam technique with dc slice imaging at collision energies from 3.2 to 10.4 kcal/mol. The products HCl (v,J) (v = 0, J = 0-5) were state-selectively detected using 2+1 resonance enhanced multiphoton ionization. The images were used to obtain the center-of-mass frame product angular distributions and translational energy release distributions. Two general features were found in all probed HCl quantum states at 6.7 kcal/mol collision energy, and these features have distinct translational energy release and angular distributions, as described for HCl (v = 0, J = 2) in a recent preliminary report [Li et al., J. Chem. Phys. 124, 011102 (2006)]. The results for HCl (v = 0, J = 2) at four collision energies were also compared to investigate the energy-dependent dynamics. We discuss the reaction in terms of a variety of models of polyatomic reaction dynamics. The dynamics of this well studied system are more complicated than can be accounted for by a single mechanism, and the results call for further theoretical and experimental investigations.  相似文献   

7.
OH+ C2H2N←C2H3 + NO→CH3 + NCO反应机理的密度泛函理论研究   总被引:1,自引:1,他引:1  
应用密度泛函理论研究了反应通道(a)C2H3 NO→CH3 NCO和(b)C2H3 NO→OH C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311 G(d,P)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308.479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91.894kJ/mol.通道(a)和(b)的理论放热值分别为111.059和96.619kJ/mol.  相似文献   

8.
The kinetics of the CH2CHO + O2 reaction was experimentally studied in two quasi-static reactors and a discharge flow-reactor at temperatures ranging from 298 to 660 K and pressures between 1 mbar and 46 bar with helium as the bath gas. The CH2CHO radicals were produced by the laser-flash photolysis of ethyl vinyl ether at 193 nm and by the reaction F + CH3CHO, respectively. Laser-induced fluorescence excited at 337 or 347.4 nm was used to monitor the CH2CHO concentration. The reaction proceeded via reversible complex formation with subsequent isomerization and fast decomposition: CH2CHO + O2 <= => O2CH2CHO --> HO2CH2CO --> products. The rate coefficients for the first and second steps were determined (k1, k-1, k2) and analyzed by a master equation with specific rate coefficients from the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Molecular and transition-state parameters were obtained from quantum chemical calculations. A third-law analysis led to the following thermodynamic parameters for the first step: Delta(R)S degrees 300K(1) = -144 J K(-1) mol(-1) (1 bar) and Delta(R)H degrees 300K(1) = (-101 +/- 4) kJ mol(-1). From the falloff analysis, the following temperature dependencies for the low- and high-pressure limiting rate coefficients were obtained: k1(0) = 5.14 x 10(-14) exp(210 K/T) cm(-3) s(-1); k1(infinity) = 1.7 x 10(-12) exp(-520 K/T) cm(-3) s(-1); and k2(infinity) = 1.3 x 10(12) exp[-(82 +/- 4) kJ mol(-1)/RT] s(-1). Readily applicable analytical representations for the pressure and temperature dependence of k1 were derived to be used in kinetic modeling.  相似文献   

9.
A potential energy surface has been calculated for the competing associative and reactive ion-molecule processes involving the reactants C3H(+) + H2. Our ab initio results show that the linear ion C3H+ and H2 can directly access the deep potential well of the propargyl ion H2CCCH+, which is calculated to lie 390 kJ mol-1 below the zero-point energy of the reactants. Isomerization between the propargyl ion and the lower energy, cyclic C3H3+ ion, calculated to lie 501 kJ mol-1 below the zero-point energy of reactants, can subsequently occur via two pathways. One of these pathways involves a transition state lying 22 kJ mol-1 below the energy of the reactants while the other, which occurs at much lower energies, involves two transition states and an intermediate. The dissociation of c-C3H3+ into c-C3H2(+) + H is calculated to occur directly, without any intermediate potential energy maximum, but the energy of the products lies 7.3 kJ mol-1 above the energy of the reactants. Using the minimum energy potential pathway and properties of the stationary point structures determined via ab initio methods, we have calculated both the association rate coefficient to produce C3H3+ as a function of density and the branching ratio between the propargyl and cyclic structures of the ion. Our results are in good agreement with some experimental results and in conflict with others. Specifically, we agree with the 1:1 branching ratio measured for the propargyl and cyclic isomers of C3H3+ at 80 and 300 K and we agree with the rate coefficient for radiative association measured at 80 K. We cannot reproduce reported measurements that the reactive channel (C3H2(+) + H) is the dominant channel at 80 K and at low gas densities, or that the association channel at high densities saturates at an effective rate coefficient well below the Langevin value -2x10(-11) cm3 s-1 at 300K and 1x10(-10) cm3 s-1 at 80K.  相似文献   

10.
Full-dimensional, density functional theory (B3LYP/6-311g(d,p))-based potential energy surfaces (PESs) are reported and used in quasi-classical calculations of the reaction of C with C(2)H(2). For the triplet case, the PES spans the region of the reactants, the complex region (with numerous minima and saddle points) and the products, linear(l)-C(3)H+H, cyclic(c)-C(3)H+H and c-(3)C(3)+H(2). For the singlet case, the PES describes the complex region and products l-C(3)H+H, c-C(3)H+H and l-(1)C(3)+H(2). The PESs are invariant under permutation of like nuclei and are fit to tens of thousands of electronic energies. Energies and harmonic frequencies of the PESs agree well the DFT ones for all stationary points and for the reactant and the products. Dynamics calculations on the triplet PES find both l-C(3)H and c-C(3)H products, with l-C(3)H being dominant at the energies considered. Limited unimolecular reaction dynamics on the singlet PES find both products in comparable amounts as well as the C(3)+H(2) product.  相似文献   

11.
The total rate constant for the reaction of Cl atoms with HO2NO2 was found to be less than 1.0 × 10?13 cm3 s?1 at 296 K by the discharge flow/resonance fluorescence technique. The reaction was also studied by the discharge flow/mass spectrometric technique. k1a + k1b was measured to be (3.4 ± 1.4) × 10?14 cm3 s?1 at 296 K. The reaction is too slow to be of any importance in stratospheric chemistry.  相似文献   

12.
The rate constant for the reaction of OH radicals with molecular hydrogen was measured using the flash photolysis resonance-fluorescence technique over the temperature range of 200-479 K. The Arrhenius plot was found to exhibit a noticeable curvature. Careful examination of all possible systematic uncertainties indicates that this curvature is not due to experimental artifacts. The rate constant can be represented by the following expressions over the indicated temperature intervals: k(H2)(250-479 K) = 4.27 x 10(-13) x (T/298)2.406 x exp[-1240/T] cm3 molecule(-1) (s-1) above T = 250 K and k(H2)(200-250 K) = 9.01 x 10(-13) x exp[-(1526 +/- 70)/T] cm3 molecule(-1) s(-1) below T = 250 K. No single Arrhenius expression can adequately represent the rate constant over the entire temperature range within the experimental uncertainties of the measurements. The overall uncertainty factor was estimated to be f(H2)(T) = 1.04 x exp[50 x /(1/T) - (1/298)/]. These measurements indicate an underestimation of the rate constant at lower atmospheric temperatures by the present recommendations. The global atmospheric lifetime of H2 due to its reaction with OH was estimated to be 10 years.  相似文献   

13.
14.
15.
《Chemical physics letters》1987,140(2):195-199
A steady-state system involving the photolysis of Cl2 as a source of Cl has been used to investigate the reaction of Cl with CS2 at 293 ± 3 K in a 420 l reaction chamber coupled to FTIR and mass spectrometers. Using a relative rate technique, the measured effective rate constant was found to be dependent on the total pressure and mole fraction of O2 present in the system. In 760 Torr synthetic air, the overall rate constant for the Cl + CS2 reaction is(0.83 ± 0.17) × 10−13 cm3 molecule−1s−1. SO2, COS and COCl2 are the main reaction products.  相似文献   

16.
17.
The reaction of NO(3) radical with C(2)H(4) was characterized using the B3LYP, MP2, B97-1, CCSD(T), and CBS-QB3 methods in combination with various basis sets, followed by statistical kinetic analyses and direct dynamics trajectory calculations to predict product distributions and thermal rate constants. The results show that the first step of the reaction is electrophilic addition of an O atom from NO(3) to an olefinic C atom from C(2)H(4) to form an open-chain adduct. A concerted addition reaction mechanism forming a five-membered ring intermediate was investigated, but is not supported by the highly accurate CCSD(T) level of theory. Master-equation calculations for tropospheric conditions predict that the collisionally stabilized NO(3)-C(2)H(4) free-radical adduct constitutes 80-90% of the reaction yield and the remaining products consist mostly of NO(2) and oxirane; the other products are produced in very minor yields. By empirically reducing the barrier height for the initial addition step by 1 kcal mol(-1) from that predicted at the CBS-QB3 level of theory and treating the torsional modes explicitly as one-dimensional hindered internal rotations (instead of harmonic oscillators), the computed thermal rate constants (including quantum tunneling) can be brought into very good agreement with the experimental data for the overall reaction rate constant.  相似文献   

18.
The reaction mechanism of C6H5 + C6H5NO involving four product channels on the doublet-state potential energy surface has been studied at the B3LYP/6-31+G(d, p) level of theory. The first reaction channel occurs by barrierless association forming (C6H5)2NO (biphenyl nitroxide), which can undergo isomerization and decomposition. The second channel takes place by substitution reaction producing C12H10 (biphenyl) and NO. The third and fourth channels involve direct hydrogen abstraction reactions producing C6H4NO + C6H6 and C6H5NOH + C6H4, respectively. Bimolecular rate constants of the above four product channels have been calculated in the temperature range 300-2000 K by the microcanonical Rice-Ramsperger-Kassel-Marcus theory and/or variational transition-state theory. The result shows the dominant reactions are channel 1 at lower temperatures (T < 800 K) and channel 3 at higher temperatures (T > 800 K). The total rate constant at 7 Torr He is predicted to be k(t) = 3.94 x 10(21) T(-3.09) exp(-699/T) for 300-500 K, 2.09 x 10(20) T(-3.56) exp(2315/T) for 500-1000 K, and 1.51 x 10(2) T(3.30) exp(-3043/T) for 1000-2000 K (in units of cm3 mol(-1) s(-1)), agreeing reasonably with the experimental data within their reported errors. The heats of formation of key products including biphenyl nitroxide, hydroxyl phenyl amino radical, and N-hydroxyl carbazole have been estimated.  相似文献   

19.
Although a number of hydrocarbon radicals including the heavier C(3)-radicals C(3)H(3) and C(3)H(5) have been experimentally shown to deplete NO effectively, no theoretical or experimental attempts have been made on the reactivity of the simplest C(3)-radical towards NO. In this article, we report our detailed mechanistic study on the C(3)H+NO reaction at the Gussian-3//B3LYP/6-31G(d) level by constructing the singlet and triplet electronic state [H,C(3),N,O] potential energy surfaces (PESs). The l-C(3)H+NO reaction is shown to barrierlessly form the entrance isomer HCCCNO followed by the direct O-elimination leading to HCCCN+(3)O on triplet PES, or by successive O-transfer, N-insertion, and CN bond-rupture to generate the product (1)HCCN+CO on singlet PES. The possible singlet-triplet intersystem crossings are also discussed. Thus, the novel reaction l-C(3)H+NO can proceed effectively even at low temperatures and is expected to play an important role in both combustion and interstellar processes. For the c-C(3)H+NO reaction, the initially formed H-cCCC-NO can most favorably isomerize to HCCCNO, and further evolution follows that of the l-C(3)H+NO reaction. Quantitatively, the c-C(3)H+NO reaction can take place barrierlessly on singlet PES, yet it faces a small barrier 2.7 kcal/mol on triplet PES. The results will enrich our understanding of the chemistry of the simplest C(3)-radical in both combustion and interstellar processes, which to date have received little attention despite their importance and available abundant studies on its structural and spectroscopic properties.  相似文献   

20.
New high-level quantum chemical calculations have been undertaken to understand the rates and mechanisms of the reactive and associative channels for the reactants C2H2(+) + H2. The reactive channel, which produces C2H3(+) + H, has been shown to be slightly endothermic, confirming earlier calculations at a somewhat lower level and in agreement with some recent experimental work. The associative channel, leading to C2H4+, has been shown to proceed via a transition state with negative energy relative to the reactants, so that association is predicted to be efficient. This result is in conflict with an earlier theoretical study but in agreement with low-temperature experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号