首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Optical and optoelectronic properties of gallium nitride strongly depend on the synthesis procedure, which may be related to specific structural characteristics of GaN inherent to each preparation condition. Amorphous and nanocrystalline GaN films have been prepared by ion‐assisted deposition (IAD). The films prepared at 10?5 Torr for <50 min have shown exploitable optoelectronic properties, in spite of the high concentration of oxygen of these films (up to 25 at.%). We study here the evolution of the local structure around Ga atoms as the deposition time increases. Five IAD GaN films of thickness ranging between 140 and 450 nm on silicon substrates were analysed by x‐ray absorption fine structure (XAFS) at the Ga K‐edge. The first and second shells of neighbouring atoms are clearly identified in the radial distribution functions at approximately 1.9 and 3.2 Å, respectively. In all of the films, Ga seems to be tetrahedrally coordinated to four nitrogen atoms, some of which may be substituted by oxygen. For deposition times <50 min, analysis of both x‐ray adsorption near‐edge structure (XANES) and extended x‐ray adsorption fine structure (EXAFS) regions indicates that the material is highly amorphous. Above this threshold, a peak corresponding to the first coordination sphere of Ga atoms becomes discernible and increases in intensity for longer deposition times, indicating that the second shell of atoms is now more ordered. The pseudo Debye–Waller factor of the Ga shell is used for monitoring the average degree of amorphization in an ~100 nm thick top layer, which seems to be related to the film oxygen content. The XAFS results are compatible with a layered distribution of crystallinity, as has been suggested previously for these films. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The deposition of GaN thin films in a nitrogen–hydrogen microwave plasma using Ga(CH 3 ) 3 as a gallium precursor was investigated. The deposit was identified as stoichiometric GaN by XPS and XRD. The substrate was dielectrically heated in the microwave discharge and the substrate temperature was lower than that in usual thermal MOCVD. The NH radicals, which were the primary N-atoms precursors, and fragments of Ga(CH 3 ) 3 were identified in the plasma by OES. The NH radical formation and the decomposition of Ga(CH 3 ) 3 in the plasma may be one of the reasons for the lower deposition temperature of GaN. The position dependence of the substrate temperature showed similar tendency as the position dependence of the electron temperature. The plasma state contributes to the deposition of GaN thin films. The deposited GaN exhibited a wide optical band gap of 3.4eV. Material highly oriented along the c axis was detected in the deposit, and a PL spectrum which has the band head at about 450 mm was obtained.  相似文献   

3.
Ag nanoparticles embedded in SiO2 thin films (Ag/SiO2 films) were prepared by a multitarget sputtering method. In the optical absorption spectra of the Ag/SiO2 films, the absorption peak due to the surface plasmon resonance (SPR) of Ag particle was clearly observed at the wavelength of 394–413 nm. The imaginary part of the third-order non-linear susceptibility, Im [χ(3)], of the Ag/SiO2 film was estimated to be ?1.1×10?8 esu measured by the femtosecond Z-scan technique near the SPR peak. The response time of the film measured from the decay of the differential transmission of the pump-probe experiment was 1.3 ps at the SPR peak.  相似文献   

4.
A new single‐source precursor, [SnCl4{OC(H)OC2H5}2], prepared by treating tin tetrachloride with ethyl formate (1:2 ratio) was developed for the deposition of tin oxide thin films on glass substrates. The compound [SnCl4{OC(H)OC2H5}2] is highly volatile and provides very high growth rates (up to 100Å s?1 at 560 °C) in an atmospheric pressure chemical vapor deposition (APCVD) reactor. More significantly, the compound does not decompose to tin oxide below 320 °C, thereby minimizing the formation of particles in the vapor above the growing tin oxide film. To prepare highly conducting fluorine doped tin oxide (SnO2:F) films 2,2,2‐trifluoroethyl trifluoroacetate was used as the source of fluoride. High quality SnO2:F films were deposited at 560 °C with a flow rate of 2 mL fluoride reagent hr?1; typical film properties are resistivity of 5.9 X 10?4 Ω cm, Hall mobility of 27.3 cm2 V?1 s?1, carrier concentration of 3.9 X 1020 cm?3 and percent transmission ranging from 86 to 88 %. The best films of SnO2:F possess transparencies as high as 90 % (750 nm), sheet resistances as low as 7 Ω sq?1 and Haacke's figure of merit as high as 29 X 10?3 (750 nm). The newly developed APCVD reactor and the chemistry were optimized with respect to structural, electrical and optical properties of the films by adjusting the substrate temperature, gas flow rates and the amount of fluoride present in the vapor stream. Growth rates with respect to deposition time, substrate temperature and flow rates of precursors were found to be similar for both undoped (SnO2) and doped (SnO2:F) samples. The SnO2:F films possess larger grains than the SnO2 which may account for the lower resistivity and the higher mobility in the SnO2:F samples.  相似文献   

5.
The electronic structure of the epitaxial GaN, InN nanolayers, and the ultrathin Cs/GaN and Cs/InN interfaces was investigated under ultrahigh vacuum at various Cs coverages. The experiment was carried out using synchrotron-based photoelectron spectroscopy. The photoemission spectra of the valence band and the In 4d, N 2s, Ga 3d, and Cs 4d semicore levels were studied as a function of Cs coverages. It was found that the Cs adsorption in the submonolayer coverage region causes substantial changes in the spectra due to charge transfer between the Cs adlayer and surface Ga or In atoms. The strong interaction of the dangling bonds of Ga or In with Cs adatoms effectively increases the Ga or In valency.  相似文献   

6.
Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X-ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, angular resolution (for eliminating the substrate Ti contribution) and argon ion sputtering (for removing passive films) were used along with XPS. The passive film on Ti was determined to consist of a very thin TiO2layer with small amounts of Ti2O3, TiO, hydroxyl groups, and water with a thickness of 5.9 nm. The VB spectra of Ti were deconvoluted into four peak components: a peak at ~1 eV, attributed to the Ti metal substrate; a broad peak in the 3–10 eV range, mainly attributed to O 2p (~6 eV) and O 2p-Ti 3d hybridized states (~8 eV), owing to the π (non-bonding) and σ (bonding) orbitals in the passive oxide film; and a peak at ~13 eV, attributed to the 3σ orbital of O 2p as OHor H2O. The VB region spectrum between approximately 3 and 14 eV from Ti is originating from the passive film on Ti. In particular, characterization of VB spectrum obtained with a takeoff angle of less than 24° is effective to obtain VB spectrum only from the passive film on Ti. The property as n-type semiconductor of the passive film on Ti is probably higher than that of rutile TiO2ceramics.  相似文献   

7.
Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been found that the use of HfN (100) buffer layers allows us to grow cubic InN (100) films with an in-plane epitaxial relationship of [001]InN//[001]HfN//[001]MgO. X-ray diffraction and electron back-scattered diffraction measurements have revealed that the phase purity of the cubic InN films was as high as 99%, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD.  相似文献   

8.
The structural analysis of the hexagonal InN film prepared on a Si(100) substrate by the AP-HCVD technique using InCl3 and NH3 as starting materials were carried out by the X-ray pole figure analysis. The deposited films consist of the hexagonal InN pillar crystals. It was found that the pillar crystals, which have random rotation around the 100 axis, were grown at an angle of 70–90° to the substrate.  相似文献   

9.
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3N2, Mg3N2, and Ge3N4) have been studied by powder X‐ray diffraction (XRD) and 14N magic angle‐spinning (MAS) solid‐state NMR spectroscopy. For Ca3N2, Mg3N2, and Ge3N4, no 14N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and ‘high speed’ (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder‐XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their 14N MAS solid‐state NMR spectrum matches perfectly well with the number of nitrogen‐containing phases identified by powder‐XRD. The 14N MAS solid‐state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Nanocrystalline Diamond Thin Films Synthesis on Curved Surface   总被引:1,自引:0,他引:1  
Thin films of curved surface nanocrystalline diamond (CS-NCD) are a category of important materials. However, the development of such materials is still a highly challenging task. Here we present a novel approach to synthesizing CS-NCD thin films deposited on non-spherical surfaces of molybdenum substrate using direct current plasma jet chemical vapor deposition. A special cooling system was designed and applied to ensure uniform substrate temperature. It is demonstrated from simulation and experimental results that this system is favorable for the production of thin films. The results show that the quality of CS-NCD thin films depends on the selection of optimal values of parameters including CH4 concentration, substrate temperature, and chamber pressure. If the CH4 concentration and/or the substrate temperature is too high or low, it results in non-diamond phase or micron-crystalline diamond thin films. Synthetic CS-NCD thin films using the proposed method have a smooth surface and uniform thickness. The average grain size and the mean surface roughness are approximately 30 and 4.3 nm respectively. Characteristics of CS-NCD thin film spectra comprised of the full width at half maximum with broad Raman peaks around 1,140 and 1,480 cm?1, confirming the presence of the NCD phase.  相似文献   

11.
Al2O3 insulator layers were deposited step by step by the physical vapor deposition (PVD) method onto gallium nitride in the wurtzite form, n‐type and (0001)‐oriented. The substrate surface and the early stages of Al2O3/n‐GaN(0001) interface formation were characterized in situ under ultra‐high vacuum conditions by X‐ray and ultraviolet photoelectron spectroscopy (XPS, UPS). The electron affinity (EA) of the substrate cleaned by annealing was 3.6 eV. Binding energies of the Al 2p (76.0 eV) and the O 1s (532.9 eV) confirmed the creation of the Al2O3 compound in the deposited film for which the EA was 1.6 eV. The Al2O3 film was found to be amorphous with a bandgap of 6.9 eV determined from the O 1s loss feature. As a result, the calculated Al2O3/n‐GaN(0001) valence band offset (VBO) is ?1.3 eV and the corresponding conduction band offset (CBO) 2.2 eV.  相似文献   

12.
DC reactive magnetron sputtering technique was employed for deposition of titanium dioxide (TiO2) films. The films were formed on Corning glass and p‐Si (100) substrates by sputtering of titanium target in an oxygen partial pressure of 6×10?2 Pa and at different substrate temperatures in the range 303 – 673 K. The films formed at 303 K were X‐ray amorphous whereas those deposited at substrate temperatures ≥ 473 K were transformed into polycrystalline nature with anatase phase of TiO2. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic bonding configuration of TiO2. The surface morphology of the films was significantly influenced by the substrate temperature. MOS capacitor with Al/TiO2/p‐Si sandwich structure was fabricated and performed current–voltage and capacitance–voltage characteristics. At an applied gate voltage of 1.5 V, the leakage current density of the device decreased from 1.8 × 10?6 to 5.4 × 10?8 A/cm2 with the increase of substrate temperature from 303 to 673 K. The electrical conduction in the MOS structure was more predominant with Schottky emission and Fowler‐Nordheim conduction. The dielectric constant (at 1 MHz) of the films increased from 6 to 20 with increase of substrate temperature. The optical band gap of the films increased from 3.50 to 3.56 eV and refractive index from 2.20 to 2.37 with the increase of substrate temperature from 303 to 673 K. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The response of potentiometric anion selective electrodes consisting of undoped GaN or In0.2Ga0.8N films grown on Al2O3 (sapphire) was measured in electrolyte solutions of F?, NO3?, Cl?, SCN?, ClO4? or Br? anions at concentrations ranging from 10?6 to 10?1 M. The slope of the linear regions varied between ?32.8 and ?51.9 mV/decade for the GaN electrode and between ?31.0 and ?72.0 mV/decade for the In0.2Ga0.8N electrode. The drift of the GaN electrode reached 1.57 mV/day in KNO3 solutions, whereas the drift of the In0.2Ga0.8N electrode could not be evaluated due to large drops in the slope of its linear range over time. Both electrodes were sensitive to pH variations over the pH range from 12.8 to 1.3. The GaN electrode surface could be electrochemically etched under anodic polarization; however, both GaN and In0.2Ga0.8N electrodes remained chemically stable and mechanically intact under open circuit conditions even after prolonged use.  相似文献   

14.
Abstract

A novel means of lithographically forming fluorescent oligothiophene patterns is demonstrated. MgKα x‐ray and low energy electron irradiation of 3‐hexylthiophene (3HT) monomer condensed on a cold metal surface result in the formation of photoluminescent films as thick as several microns. The excitation maxima for the x‐ray‐ and electron‐formed samples are 350 and 405 nm, respectively, with corresponding emission maxima of 430 and 525 nm, indicating that the films are oligomeric rather than polymeric. Ultraviolet photoelectron spectra (UPS) of 3HT monomer and beam‐formed films have been compared with theoretically simulated density‐of‐states spectra of 3HT, thiophene, bithiophene, terthiophene, and quaterthiophene. The radiation‐induced changes in the 3HT UPS valence spectra are explained by delocalization of electrons along the oligomer backbone. Comparison of the experimental UPS and simulated spectra suggests that the average conjugation length of the beam‐formed films is less than six. This is consistent with the photoluminescence results. Fluorescence and atomic force microscopies of electron‐formed samples show the presence of oligomerized 3HT islands residing on a less fluorescent organic background. Electrical conductivity of the beam‐formed samples is low, on the order of 10?9 cm?1 ohm?1, consistent with the formation of islands of conjugated material surrounded by a less electronically delocalized, insulating background. Lack of solubility of the beam‐formed films suggests that partial crosslinking and decomposition may also occur during the oligomerization process.  相似文献   

15.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

16.
王阳  邵翔  王兵 《物理化学学报》2013,29(7):1363-1369
采用脉冲激光沉积术(PLD)同质外延生长了表面原子级平整的6%(原子比)Cr 掺杂的金红石相TiO2(110)单晶薄膜, 采用扫描隧道显微镜(STM)、扫描隧道谱(STS)、X 射线光电子能谱(XPS)和紫外光电子能谱(UPS)对其进行了表征. 结果表明: Cr 掺杂对TiO2(110)-(1×1)表面的形貌没有明显影响, 但是提高了掺杂薄膜在负偏压的导电性; Cr与晶格O键合而呈现+3价态, 由此在TiO2的价带顶上方~0.4 eV处引入杂质能级. 紫外-可见光吸收谱显示薄膜的光吸收能力被扩展到~650 nm, 处于可见光范围. 借助STM以单个甲醇分子的光解反应检测了薄膜的光催化活性. 仅观察到紫外光照射下甲醇分子的脱氢反应, 在可见光照射下(λ>430 nm)甲醇分子没有发生反应, 表明单独的Cr掺杂可能不足以提高TiO2在可见光下的催化活性.  相似文献   

17.
Ag作催化剂制备的GaN的形貌及其性能   总被引:2,自引:2,他引:0  
用化学气相沉积法(CVD)在Si(100)衬底上以Ag纳米颗粒为催化剂制备了微纳米结构的GaN,原料是熔融态的金属Ga和气态的NH3。采用X射线衍射仪(XRD)、透射电镜(TEM)、X-ray能谱仪(EDS)、场发射扫描电子显微镜(SEM)、光致发光能谱(PL)和霍尔效应测试对样品进行了结构、成分、形貌和发光、电学性能分析。结果表明:生成的自组装GaN为六方纤锌矿的类似小梯子的微纳米单晶结构,且在不同的温度下,GaN的发光性能和电学性能也有所不同,相对于强的紫外发光峰,其它杂质发光峰很微弱,且均呈p型导电。对本实验所得到的GaN微纳米结构的可能形成机理进行了探讨。  相似文献   

18.
Synthesis of titanium oxide film by plasma oxidization of the metallic films is investigated. Argon/oxygen gas mixture in the pressure range 30 × 10?2 mbar is used for plasma processing at a frequency of 250 kHz. The plasma‐oxidized films are annealed in a tube furnace in argon atmosphere to establish crystalline‐phase formation. X‐ray diffraction and Raman spectroscopic results manifest peaks corresponding to rutile TiO2. Ultraviolet‐Visible (UV‐Vis) spectroscopic analysis confirms the bandgap of rutile TiO2, and photoluminescence spectra exhibit peaks due to oxygen defects. Homogeneity across the film's thickness and the nature of the film substrate interface is studied by depth profiling acquired using secondary ion mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Ion implantation of impurities into thin films of poly(p-phenylene sulfide) (PPS) is found to increase the conductivity of the material by up to 12 orders of magnitude. The increase is stable under exposure to ambient conditions, in contrast to the instability of the conductivity increases in PPS produced by chemical doping with AsF5. PPS films 0.1–0.2 μm thick are spin cast from solution onto interdigitated electrodes patterned on an oxidized silicon substrate. The room-temperature interelectrode resistance is measured as a function of implantation fluence. An estimate of film conductivity is obtained from this resistance with a simple model for the electrode and film geometry. A first experiment yielded similar conductivity increases for implantation of either arsenic or krypton. At a fluence of 1 × 1016cm?;2, which corresponds to an average impurity concentration of 2.5 × 1021cm?3, the conductivity reaches an apparently saturated value of 1.5 × 10?5 (Ω cm)?1. Infrared spectra of the films before and after implantation suggest that crosslinking may be present in the implanted films, and Auger studies show stoichiometric changes throughout the implanted layer. These results suggest that the observed conductivity changes are the result of molecular rearrangements produced by the implantation rather than the result of specific chemical doping. Specific chemical doping may, however, explain the results of a second experiment in which implantation of bromine resulted in substantially larger conductivities found to increase at an approximate linear rate from a value of 1.0 × 10?4 (Ω cm)?1 at a fluence of 1 × 1016 cm?2 to a value of 4.0 × 10?4 (Ω cm)?1 at a fluence of 3.16 × 1016 cm?2.  相似文献   

20.
Conducting polypyrrole (PPy) films doped with p‐toluene solfonate (pTS?), perchlorate (ClO4?) and polyphosphate (PP?) were electrochemically synthesized on the stainless steel SS‐304 and the Indium Tin Oxide (ITO) glass substrates successfully. The conducting polymer composite films were studied by Fourier transform infrared spectra, integrated thermal analysis system and scanning electron microscopy, respectively. Four‐point probe measurements and in situ nanotribolab system equipped with a nanoscale electrical contact resistance package were employed to analyze their electrical and mechanical properties. Results indicate that the film doped with PP? ion showed the best thermal stability. For the ClO4? ion doped films, the glass transition occurred at 274.8 °C. The pTS? ion doped film on the SS‐304 steel had a good conductivity, and there was a voltage barrier that ranged from ?1.25 to 1.9 V according to the current–voltage curves. Nanoindentation tests show that the mechanical properties of the PPy/pTS? film and the PPy/PP? film were better than that of PPy/ClO4? films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号