首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Quinazoline-2,4(1H,3H)-diones 4 were silylated and condensed with methyl 5-azido-2,5-dideoxy-3-O-(4-methylbenzoyl)-α,β-D-erythro-pentofuranoside (3) using trimethylsilyl trifluoromethanesulfonate (TMS triflate) as the catalyst to afford the corresponding 5′-azidonucleosides 5 . 1-(5-Azido-2,5-dideoxy-α-D-erythro-pentofuranosyl)quinazoline-2,4(1H,3H)-diones 6 and the corresponding β anomers were obtained by treating 5 with sodium methoxide in methanol at room temperature. 6-Methyl-1-(5-amino-2,5-dideoxy-β-D-erythro-pentofuranosyl)quinazoline-2,4(1H,3H)-dione (8) was obtained by treatment of the corresponding azido derivative 7 with triphenylphosphine in pyridine, followed by hydrolysis with ammonium hydroxide.  相似文献   

2.
The synthesis of oligonucleotides containing 7-(2-deoxy-β-D-erythro-pentofuranosyl)guanine and 8-amino-2′-deoxyguanosine was accomplished. The viable intermediate N2-isobutyryl-7-(2-deoxy-β-D-erythro-pentofuranosyl)guanine ( 6 ) was prepared via a four step deoxygenation procedure from 7-β-D-ribofuranosylguanine ( 1 ). The 5′-hydroxyl group of 6 was protected as 4,4′-dimethoxytrityl ether and then converted to the target phosphoramidite ( 8 ) via conventional phosphitylation procedure. The amino groups of 8-amino-2′-deoxyguanosine ( 9 ) were protected in the form of N-(dimethylainino)methylene functions to give the protected nucleoside 10 , which was subsequently converted to the target phosphoramidite 12 via dimethoxytritylation followed by phosphitylation. The phosphoramidites 8 and 12 were incorporated into a 26-mer and a 31-mer G-rich oligonucleotide using solid-support, phosphoramidite methodology. Analysis of antiparallel triplex formation by the oligonucleotides containing 7-(2-deoxy-β-D-erythro-pentofura-nosyl)guanine in place of 2′-deoxyguanosine showed no enhancement in triple helix formation.  相似文献   

3.
A stereospecific high-yield glycosylation of preformed fully aromatic pyrroles has been accomplished for the first time. Reaction of the sodium salt of pyrrole-2-carbonitrile ( 1a ) and pyrrole-2,4-dicarbonitrile ( 1b ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 2 ) gave exclusively the corresponding blocked nucleosides with β-anomeric configuration 3a and 3b , which on deprotection gave 1-(2-deoxy-β-D-erythro-pentofuranosyl) derivatives of 1a ( 3c ) and 1b ( 3d ). Functional group transformation of 3c and 3d provided a number of 2-monosubstituted 4a-c and 2,4-disubstituted 4d-f derivatives of 1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrrole. Similar glycosylation of the sodium salt of 1a and 1b with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 5 ) and further functional group transformation of the intermediate blocked nucleosides 6a and 6b provided 1-β-D-arabinofuranosyl derivatives of pyrrole-2-carboxamide ( 7b ) and pyrrole-2,4-dicarboxamide ( 7d ). The synthetic utility of this glycosylation procedure for the preparation of 1-β-D-ribofuranosylpyrrole-2-carbonitrile ( 12 ) has also been demonstrated by reacting the sodium salt of 1a with 1-chloro-2,3-O-isopropylidene-5-O-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 10 ) and subsequent deprotection of the blocked intermediate 11 . This study provided a convenient route to the preparation of aromatic pyrrole nucleosides.  相似文献   

4.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

5.
Condensation of 2,4-bis(trimethylsilyloxy)pyridine ( 1 ) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 2 ) gave 4-hydroxy-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2-pyridone ( 3 ). Deblocking of 3 gave 4-hydroxy-1-β-D-ribofuranosyl-2-pyridone (3′-deazauridine) ( 4 ). Treatment of 4 with acetone and acid gave 2′,3′-O-isopropylidene-3-deazauridine ( 6 ). Reaction of 4 with diphenylcarbonate gave 2-hydroxy-1-β-D-arabinofuranosyl-4-pyridone-O2←2′-cyclonucleoside ( 7 ) which established the point of gylcosidation and configuration of 4 . Base-catalyzed hydrolysis of 7 gave 4-hydroxy-1-β-D-arabinofuranosyl-2-pyridone (3-deazauracil arabinoside) ( 12 ). Fusion of 1 with 3,5-di-O-p-toluyl-2-deoxy-D-erythro-pentofuranosyl chloride ( 5 ) gave the blocked anomeric deoxynucleosides 8 and 10 which were saponified to give 4-hydroxy-1-(2-deoxy-β-D-erythro-pentofuranosyl)-2-pyridone (2′-deoxy-3-deazauridine) ( 11 ) and its α anomer ( 9 ). Condensation of 4-acetamido-2-methoxypridine ( 13 ) with 2 gave 4-acetamido-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2-pyridone ( 14 ) which was treated with alcoholic ammonia to yield 4-acetamido-1-β-D-ribofuranosyl-2-pyridone ( 15 ) or with methanolic sodium methoxide to yield 4-amino-1-β-D-ribofuranosyl-2-pyridone (3-deazacytidine) ( 16 ). Condensation of 13 and 2,3,5-tri-O-benzyl-D-arabinofuranosyl chloride ( 17 ) gave the blocked nucleoside 22 which was treated with base and then hydrogenolyzed to give 4-amino-1-β-D-arabinofuranosyl-2-pyridone (3-deazacytosine arabinoside) ( 23 ). Fusion of 13 with 5 gave the blocked anomeric deoxynucleosides 18 and 20 which were deblocked with methanolic sodium methoxide to yield 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-2-pyridone (2′-deoxy-3-deazacytidine) ( 21 ) and its a anomer 19 . The 2′-deoxy-erythro-pentofuranosides of both 3-deazauracil and 3-deazacytosine failed to obey Hudson's isorotation rule but did follow the “quartet”-“triplet” anomeric proton splitting pattern in the 1H nmr spectra.  相似文献   

6.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

7.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

8.
The synthesis of the 7-deaza-2′-deoxy-adenine derivatives 7b–3 with chloro, bromo, or methyl substituents at C(5) is described. Glycosylation of the 5-substituted 4-chloropyrrolo[2,3-d]pyrimidines 4b–d with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 3 ) gave the β-D -nucleosides 5b–d , exclusively. They were deblocked (→ 6b–d ) and converted into the tubercidin derivatives 7b–d .  相似文献   

9.
Oligonucleotides containing N 7-(2′-deoxy-β-D -erythro-pentofuranosyl)adenine ( 1 ), -hypoxanthine ( 2 ), and -guanine ( 3 ) were synthesized on solid-phase using phosphonate and phosphoramidite chemistry. As part of the synthesis of compound 2 , the nucleobase-anion glycosylation of various 6-alkoxypurines with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) was investigated. The duplex stability of oligonucleotides containing N 7-glycosylated purines opposite to regular pyrimidines was determined, and thermodynamic data were calculated from melting profiles. Oligodeoxyribonucleotide duplexes containing N 7-glycosylated adenine⋅Td or N 7-glycosylated guanine⋅Cd base pairs are more stable in the case of parallel strand orientation than in the case of antiparallel chains.  相似文献   

10.
2′-Deoxyribofuranosyl and arabinofuranosyl nucleosides of certain purine-6-sulfenamides, sulfinamides and sulfonamides have been prepared by sequential amination and controlled oxidation of the corresponding 6-thiopurine nucleosides, and evaluated for antiviral and antitumor activities in mice. Amination of 2′-deoxy-6-thioinosine ( 4a ) and 9-β-D-arabinofuranosyl-6-thiopurine ( 4c ) with chloramine solution gave the corresponding 6-sulfenamides 5a and 5c , respectively, which on selective oxidation with 3-chloroperoxybenzoic acid (MCPBA) gave diastereomeric 9-(2-deoxy-β-D-erythro-pentofuranosyl)purine-6-sulfinamide ( 6a ) and 9-β-D-arabinofuranosylpurine-6-sulfinamide ( 6c ), respectively. However, oxidation of 5a and 5c with excess of MCPBA gave the corresponding 6-sulfonamide derivatives 7a and 7c , respectively. Similar amination of 2′-deoxy-6-thioguanosine ( 4b ), ara-6-thioguanine ( 4d ) and α-2′-deoxy-6-thioguanosine ( 8 ) gave the respective 6-sulfenamide derivatives 5b, 5d and 9 . Controlled oxidation of 5b, 5d and 9 gave (R,S)-2-amino-9-(2-deoxy-β-D-erythro-pentofuranosyl)purine-6-sulfinamide ( 6b ), (R,S)-2-amino-9-β-D-arabinofuranosylpurine-6-sulfinamide ( 6d ) and the α-anomer of ( 6b) (10 ), respectively. The diastereomeric mixture of (R,S )-10 was partially resolved and the structure of S -10 was assigned by single-crystal X-ray diffraction analysis. Oxidation of 5b, 5d and 9 with excess of MCPBA afforded the respective 6-sulfonamide derivatives 7b, 7d and 11 . Nucleosides 5c and 7c were significantly active against Friend leukemia virus in mice, whereas 6c was somewhat less active. Of the 20 nucleosides evaluated, 12 exhibited biologically significant anti-L1210 activity in mice. Nucleosides 6b and 7a at 173 mg/kg/day × 1 showed a T/C of 153, whereas 7d at 800 mg/kg/day × 1 showed a T/C of 153 against L1210 leukemia. The α-nucleoside 9 at 480 mg/kg/day × 1 gave a T/C of 172. A single treatment with 6b, 7a, 7d and 9 reduced the body burdens of viable L1210 cells by more than 99.2%. The antileukemic activity of these novel nucleosides tended to parallel solubility.  相似文献   

11.
The synthesis of the 7-deaza-2′-deoxyinosine derivatives 3a – c with chloro, bromo, and iodo substituents at position 7 is described. Glycosylation of the 7-halogenated 6-chloro-7-deazapurines 4a – c or of the 7-halogenated 6-chloro-7-deaza-2-(methylthio)purines 9a – c with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) furnished the intermediates 7a – c and 11a – c , respectively, which gave, upon deprotection, the desired nucleosides 3a – c .  相似文献   

12.
The synthesis of 3,5-dideoxy-1,2-O-isopropylidene-5-C-hydroxymethyl-β-D-erythro- (1) and α-L-threo-hexulopyranose (2) from 3-deoxy-1,2-O-isopropylidene-β-D-erythro-hexulopyranose (5) from D-fructose is described, as well as their respective transformation into 3,5-dideoxy-1,2-O-isopropylidene-5-C-hydroxymethyl-β-D-threo-(3) and -α-L-erythro-hexulopyranose (4) by inversion of configuration at C-4.  相似文献   

13.
A simple and high-yield synthesis of biologically significant 2′-deoxy-6-thioguanosine ( 11 ), ara-6-thioguanine ( 16 ) and araG ( 17 ) has been accomplished employing the Stereospecific sodium salt glycosylation method. Glycosylation of the sodium salt of 6-chloro- and 2-amino-6-chloropurine ( 1 and 2 , respectively) with 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranose ( 3 ) gave the corresponding N-9 substituted nucleosides as major products with the β-anomeric configuration ( 4 and 5 , respectively) along with a minor amount of the N-7 positional isomers ( 6 and 7 ). Treatment of 4 with hydrogen sulfide in methanol containing sodium methoxide gave 2′-deoxy-6-thioinosine ( 10 ) in 93% yield. Similarly, 5 was transformed into 2′-deoxy-6-thioguanosine (β-TGdR, 11 ) in 71 % yield. Reaction of the sodium salt of 2 with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 8 ) gave N-7 and N-9 glycosylated products 13 and 9 , respectively. Debenzylation of 9 with boron trichloride at ?78° gave the versatile intermediate 2-amino-6-chloro-9-β-D-arabinofuranosyl-purine ( 14 ) in 62% yield. Direct treatment of 14 with sodium hydrosulfide furnished ara-6-thioguanine ( 16 ). Alkaline hydrolysis of 14 readily gave 9-β-D-arabinofuranosylguanine (araG, 17 ), which on subsequent phosphorylation with phosphorus oxychloride in trimethyl phosphate afforded araG 5′-monophosphate ( 18 ).  相似文献   

14.
Summary 1-(2-Deoxy-3,5-bis-O-(4-methylbenzoyl)-D-erythro-pentofuranosyl)-5-formyluracil (4) was synthesized from 5-formyluracil and an appropriate methyl glycoside and condensed with 2-thiohydantoin (5a) and its corresponding 3-phenyl derivative5b to give 5-[1-(2-deoxy-3,5-bis-O-(4-methylbenzoyl)-D-erythro-pentofuranosyl)uracil-5-ylmethylene]-2-thiohydantoins7a and7b, respectively, in 65–70% yield. They were deprotected with sodium methoxide in methanol to give both anomers of the free nucleosides. In a different route 5-formyluracil (1) was condensed with5b and subsequently with an appropriate methyl glycoside to give7b.On leave from Chemistry Department, Faculties of Science and Education, Tanta University, Tanta, Egypt  相似文献   

15.
The glycosylation of indazolyl anions derived from 4a , b with 2-deoxy-3,5-bis-O-(4-methylbenzoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) is described. The reaction was Stereoselective – exclusive β-D -anomer formation – but regioisomeric N1- and N2-(2′-deoxy-β-D -ribofuranosides) (i.e. 6a and 7a , resp., and 6b and 7b , resp.) were formed in about equal amounts. They were deprotected to yield 8a , b and 9a , b . Compound 1 , related to 2′-deoxyadenosine ( 3 ), and its regioisomer 2 were obtained from 8b and 9b , respectively, by catalytic hydrogenation. The anomeric configuration as well as the position of glycosylation were determined by 1D NOE-difference spectroscopy. The first protonation site of 1 and 2 was found to be the NH2 group. The N-glycosylic bond of 1H-indazole N1-(2′-deoxyribofuranosides) is more stable than that of the parent purine nucleosides. Compound 1 is no substrate for adenosine deaminase.  相似文献   

16.
(-)_Malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula, was synthesized in about 30% yield from ethyl 4,6-0-benzylidene-2-deoxy-α-D-erythro-hexopyranosid-3-ulose, a chiral synthon easily derived from commercially available methyl α-D-glucopyranoside.  相似文献   

17.
The synthesis of oligonucleotides containing N7-(2-deoxy-β-D -erythro-pentofuranosyl)guanine (N7Gd; 1 ) is described. Compound 1 was prepared by nucleobase-anion glycosylation of 2-amino-6-methoxypurine ( 5 ) with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 6 ) followed by detoluoylation and displacement of the MeO group ( 8→10→1 ). Upon base protection with the (dimethylamino)methylidene residue (→ 11 ) the 4,4-dimethoxytrityl group was introduced at OH? C(5′) (→ 12 ). The phosphonate 3 and the phosphoramidite 4 were prepared and used in solid-phase oligonucleotide synthesis. The self-complementary dodecamer d(N7G? C)6 shows sigmoidal melting. The Tm of the duplex is 40°. This demonstrates that guanine residues linked via N(7) of purine to the phosphodiester backbone are able to undergo base pairing with cytosine.  相似文献   

18.
Nucleophilic substitution at C3′ of 1-(2-deoxy-5-O-trityl-β-D-erythr-pentofuranosyl)-2-methoxy-5-methyl-4(1H)-pyrimidinone (5) with methyl iodide/triphenylphosphine/diethyl azodicarboxylate gave the expected inverted iodide 6 and minor epimer 7 . Treatment of 6 with lithium nitrite/phloroglucinol yielded the desired nitro derivative 8 and subsequent acidic deprotection afforded the title compound 1 . This represents a novel method for the introduction of a nitro group into the furanosyl moiety of a nucleoside. The nmr spectroscopic techniques (COSY, NOESY, nOe, HMQC and HMBC) were used to determine the stereochemistry at C3′ of the nucleosides. Spectral analysis of H-D exchange at the 3′-position of 1 did not indicate the formation of its epimer 10 .  相似文献   

19.
The synthesis of 8-azaguanine N9-, N8-, and N7-(2′-deoxyribonucleosides) 1–3 , related to 2′-deoxyguanosine ( 4 ), is described. Glycosylation of the anion of 5-amino-7-methoxy-3H-1,2,3-triazolo[4,5-d]pyrimidine ( 5 ) with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 6 ) afforded the regioisomeric glycosylation products 7a/7b, 8a/8b , and 9 (Scheme 1) which were detoluoylated to give 10a, 10b, 11a, 11b , and 12a . The anomeric configuration as well as the position of glycosylation were determined by combination of UV, 13C-NMR, and 1H-NMR NOE-difference spectroscopy. The 2-amino-8-aza-2′-deoxyadenosine ( 13 ), obtained from 7a , was deaminated by adenosine deaminase to yield 8-aza-2′-deoxyguanosine ( 1 ), whereas the N7- and N8-regioisomers were no substrates of the enzyme. The N-glycosylic bond of compound 1 (0.1 N HCl) is ca. 10 times more stable than that of 2′-deoxyguanosine ( 4 ).  相似文献   

20.
We describe herein the synthesis and properties of the novel nucleoside derivative, 4,7-diamino-2-(2-deoxy-β-d-erythro-pentofuranosyl)-2,6-dihydro-7H-2,3,5,6-tetraazabenzo[cd]azulene (1). The palladium catalyzed cross-coupling reaction of 2,4-diamino-5-iodo-7-(2-deoxy-β-d-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine (9) with acrylonitrile afforded 2,4-diamino-5-[(E)-1-cyano-2-ethenyl]-7-(2-deoxy-β-d-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine (10) in 77% yield, which was treated with NaOMe in MeOH in the presence of NaSPh to give the desired 1 in 64% yield. Whereas 1 was stable in concentrated ammonia at room temperature, it was gradually hydrolyzed in water to give 4-amino-2-(2-deoxy-β-d-erythro-pentofuranosyl)-2,6-dihydro-7H-2,3,5,6-tetraazabenzo[cd]azulen-7-one (12). Density functional calculations indicated that 12 was 20 kcal/mol more thermodynamically stable than 1 in a model study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号