首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ reactive compatibilization was first time applied to a low melting nylon (nylon 6 and 66 copolymer) and EPDM blend system. The effects of in situ compatibilization and concentration of compatibilizer on the morphology and mechanical properties of nylon/EPDM blends have been investigated. The influence of EPM‐g‐MA on the phase morphology was examined by the scanning electron microscopy (SEM) after preferential extraction of the minor phase. The SEM micrographs were quantitatively analyzed for domain size measurements. The compatibilizer concentrations used were 0, 1, 2.5, 5, and 10 wt%. The graft copolymer (nylon‐g‐EPM) formed at the interface showed relatively high emulsifying activity. A maximum phase size reduction was observed when 2.5 wt% of compatibilizer was added to the blend system. This was followed by a leveling‐off at higher loadings indicating interfacial saturation. The conformation of the compatibilizer at the interface was deduced based on the area occupied by the compatibilizer at the blend interface. The experimental compatibilization results were compared with theoretical predictions of Noolandi and Hong. It was concluded that the molecular state of compatibilizer at interface changes with concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties. Measurement of tensile properties shows increased elongation as well as enhanced modulus and strength up on compatibilization. At higher concentrations of compatibilizer, a leveling‐off of the tensile properties was observed. A good correlation has been observed between the mechanical properties and morphological parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In situ compatibilization of low density polyehylene (LDPE) (30%) and nylon-6(70%)blends through one-step reactive extrusion using t-BuOOH as an initiator and low molec-ular weight interfacial agents as compatibilizers was studied. The compatibilizer containeda long chain bydrocarbon, double bond and two polar functional groups which was capableof reacting with both LDPE and nylon-6 in the presence of initiator to form a copolymerat the interface of the two polymer phases. The extruded blends exhibited significant en-hancement in their compatibility based on morphological, thermal analysis and mechanicalstudies. The effect of the hydrocarbon chain length and structure of the functional groupof the compatibilizer was also examined. It was found that blends prepared by using thecompatibilizer containing longer hydrocarbon chain and amide group had better mechanicalproperties.  相似文献   

3.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

4.
Blends of polypropylene (PP) and epoxidized natural rubber (ENR) were prepared by an in‐line electron induced reactive processing technique. The mixing was done in a Brabender mixing chamber coupled with an electron accelerator. The effect of sequence of electron treatment on the compatibilization of non‐polar PP and polar ENR was investigated in the presence of triallyl cyanurate (TAC). Finally, the resulting blends were characterized by different techniques, namely, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile tests, and rheological studies. Generation of phase coupling and chemical compatibilization were observed from FTIR analysis. DMA studies showed enhanced high‐temperature modulus (above the glass transition temperature of both components) followed up by lowering in the tan δ peak. Rheological studies showed increase in modulus at low frequencies. Electron treatment and incorporation of rubber phase into PP showed significant effect on the degree of crystallinity of the blends, which was characterized by DSC study. The results obtained from FTIR, DMA, SEM, rheological studies, and tensile tests strongly affirmed that electron induced reactive processing of PP in presence of TAC before adding of ENR performed the best amongst all samples modified with electrons investigated in this study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Due to the environmental pollution caused by the petroleum-based polymer, poly (lactic acid) (PLA), a biodegradable and biocompatible polymer that obtained from natural and renewable sources, has attracted widespread attention. However, the brittleness of PLA greatly limits its application. In this study, the super toughened PLA-based blends were obtained by compatibilizing the PLA/thermoplastic polyurethane (TPU) blends with the polyurethane elastomer prepolymer (PUEP) as an active compatibilizer. The mechanical properties, thermal properties and corresponding toughening mechanism of PLA/TPU/PUEP system were studied by tensile test, instrumented impact test, dynamic mechanical analysis (DMA), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All the results demonstrate that the isocyanate (−NCO) group in PUEP is successfully reacted with the –OH groups at both sides of the PLA and the obtained polyurethane (PU)~PLA copolymer (PU ~ cõ PLA) significantly improves the interfacial compatibility of PLA/TPU blends. The gradually refined dispersed phase size and fuzzy phase interface as displayed in SEM images suggest a good interfacial compatibilization in the PLA/TPU/PUEP blends, probably due to the isocyanate reaction between PLA and PUEP. And the interfacial reaction and compatibilization among the components led to the formation of super toughened PLA/TPU/PUEP blends. And the instrumented impact results indicate that most of the impact toughness is provided by the crack propagation rather than the crack initiation during the entire fracture process.  相似文献   

6.
The mechanical properties and dynamic mechanical properties of blends composed of Nylon 6 and poly(butylenes terephthalate)(PBT),with styrene/maleic anhydride(SMA)as compatibilizer,were studied.The observation on the morphologies of the etched surfaces of the cryogenically fractured specimens via scanning electron microscopy(SEM)demonstrated that in the compatibilized Nylon 6/PBT blends,there exists a finer and more uniform dispersion induced by the in-situ interfacial chemical reactions during the preparation than that in the corresponding uncompatibilized blends.On the other hand,the overall mechanical properties of the compatibilized blends could be remarkably improved compared with those of the uncompatibilized ones.Moreover,increasing the amount of the compatibilizer SMA leads to a more efficient dispersion of the PBT phase in Nylon 6/PBT blends.Furthermore,there exists an optimum level of SMA added to achieve the maximum mechanical properties.As far as the mechanism of this reactive compatibilization is concerned,the enhanced interfacial adhesion is necessary to obtain improved dispersion,stable phase morphology,and better mechanical properties.  相似文献   

7.
利用~1H-NMR研究HDPE/PET/EVA共混体系的酯交换反应   总被引:3,自引:0,他引:3  
本文在选用EVA作为HDPE/PET共混体系增容剂的基础上 ,通过双螺杆反应挤出熔融加工过程 ,促使EVA侧基上的酯基官能团与PET组分主链上的酯基在适当催化剂———有机金属化合物存在的条件下发生酯交换反应 .1H NMR结果表明 ,酯交换反应的产生在共混体系界面原位形成接枝或交联的PET EVA共聚物 ,且主要是以生成接枝共聚物的反应为主 .  相似文献   

8.
Aiming to tackle the serious brittleness problem of polylactic acid(PLA),PLA-based multiphase blends are prepared by melting reactive blending with hydroxyl functionalized ionomer as the toughening agent and compatibilizer containing epoxy groups. The structures and properties of the blends are characterized by scanning electron microscopy(SEM),Fourier transform infrared spectrometer(FT-IR),differential scanning calorimetry(DSC)and mechanical properties tests. The synergistic compatibilization and toughening effects of epoxy soybean oil (ESO),polyethylene glycol diglycidyl ether (PEGDE)and ethylene-methyl acrylate-glycidyl methacrylate (AX8900) terpolymer are compared and analyzed. The results show that the compatibilization effect is closely related to the content and position of the epoxy group in the additives,which presenting different toughening effects. The addition of AX8900 can effectively improve the toughness of the blend system to obtain balanced mechanical properties. However,ESO tends to lead to crosslinking,which limits the toughening efficiency. PEGDE mainly shows a plasticizing effect,leading to the reduction of tensile strength. The results demonstrate modification of the PLA blends by reactive blending with different epoxy additives and hydroxy-containing polymers is an effective strategy for the development of high-performance biobased PLA materials. © 2022, Science Press (China). All rights reserved.  相似文献   

9.
Compatibilized blends of thermoplastic polyurethane (TPU) and polypropylene (PP) were developed using amine (primary or secondary) functionalized PP's (PP-g-NH2 or PP-g-NHR). The strategy of reactive compatibilization is based on fast reactions between amine functional groups and urethane linkages or traces of free isocyanates released by thermal degradation of TPU. Excellent compatibilization between TPU and PP was confirmed by rheological, morphological, and mechanical properties. Much finer domain size, higher interfacial adhesion, and more stable morphologies were clearly observed by scanning electron microscopy. Significant improvements in the overall mechanical properties (tensile, tear, abrasion) imply significantly more reaction between TPU and PP phases in the two TPU/PP blends containing PP-g-NH2 or PP-g-NHR than a TPU/PP blend using PP-g-MA as a compatibilizing agent.  相似文献   

10.
Summary: In this study, we investigate the influence of reactive compatibilization on the rheological properties of polyamide 6/styrene-acrylonitrile (PA 6/SAN) blends in the melt. Linear viscoelastic shear oscillations, simple elongation to a large stretch ratio and subsequent recovery experiments were performed. The morphology of the blends was examined by atomic force microscopy. We prepared three PA 6/SAN blends with different composition ratios of PA 6 and SAN (70/30, 50/50, 30/70) and a constant concentration of the reactive agent. Our experiments revealed that reactive compatibilization significantly increases the complex modulus of PA 6/SAN blends at low frequencies. In particular, the data of the PA 6/SAN 50/50 blend and the PA 6/SAN 30/70 blend indicated that an elastic network between neighbouring PA 6 domains was formed. In simple elongation, the transient elongational viscosity of the blends exceeded the values of the single components. In recovery, the recovered stretch of all blends was larger than the recovered stretch of the pure components. The differences of the blend morphology and of the linear viscoelastic behaviour were qualitatively explained by the asymmetric properties of the reactively compatibilized interface.  相似文献   

11.
The recovery of poly(ethylene terephthalate) from post-consumer packaging products, such as beverage bottles, allowed to obtain flakes with a purity level suitable for reprocessing. Among many possibilities, the blending with polyolefins can provide toughened materials but, as poly(ethylene terephthalate) and polyolefins are immiscible, different methods of reactive compatibilization were followed to achieve a fine dispersion of polyolefln domains into a poly(ethylene terephthalate) matrix. In this meanwhile the use of a functionalized polyolefin, bearing reactive groups toward poly(ethylene terephthalate) terminals, is a promising route to obtain grafted copolymers acting as interface stabilizers. In particular, the use in the melt blending of ester or hydroxyl functionalized polyolefins in the presence of transesterification catalysts and/or anhydride functionalized polyolefins as compatibilizer precursors were both investigated by focusing onto chemical aspects. The prepared blends were analyzed through suitable fractionation methods, such as selective extractions, and spectroscopic analysis in order to identify the molecular architecture of the macromolecules resulting from the process and study their effectiveness at the interface region. Moreover the phase morphology and the thermo-mechanical properties were investigated and correlated to the structure of the macromolecular species in the system.  相似文献   

12.
介绍了增容剂的作用和分类,详细描述了不同反应类型的聚合物合金原位反应增容,对利用马来酸酐(MAH)、甲基丙烯酸缩水甘油酯(GMA)等官能团反应的原位增容体系进行了分类介绍,同时给出各种原位增容反应的增容机理。  相似文献   

13.
In this work, the compatibilization effects of hybrid maleated POE/attapulgite hybrid compatibilizer (M-POE/ATP) on the immiscible polypropylene/poly(glycolic acid) (PP/PGA) blends was investigated. The hybrid compatibilizer integrating strengthening, toughening and compatibilization functions was prepared via one-step reactive extrusion using peroxidated ATP as the initiator. Then, the effects of compatibilizer dosage on the mechanical, thermal, rheological and morphological characteristics of blends were evaluated in detail. It was found that the hybrid compatibilizer resulted in the significantly enhanced compatibility and mechanical performance. Increased amount of compatibilizer content fractionated and almost wholly suppressed the crystallization process of PGA. The compatibilized blends showed higher thermal stability than pure PGA, and lower storage modulus and complex viscosity at higher shearing frequency. PGA in the blends presented a much lower degradation rate, which lead to the higher strength retention of 81% for the blend with 4 wt% of compatibilizer in buffer solution after 35 days.  相似文献   

14.
聚烯烃/极性聚合物界面的分子状态   总被引:4,自引:0,他引:4  
唐涛  陈辉 《高分子学报》1996,(3):336-342
为了克服高分子共混物界面不易表征的缺点,提出用溶剂选择性溶解方法使界面暴露.结合X-射线光电子能谱(XPS)表征手段,研究了官能化聚合物,接枝型共聚物及带有反应性基团的聚合物作为共混物增容剂时在界面区域的分子状态.实验结果表明,作增容剂时,官能化聚合物在界面区内采取最有利的分子构象,充分发挥增容作用;接枝型共聚物主链、侧链向相应本体聚合物内扩散;而带有反应性基团的聚合物与某个本体聚合物发生反应之前存在反应基团在界面富集的过程  相似文献   

15.
In this study, poly(lactic acid) (PLA)/starch blends were prepared through reactive melt blending by using PLA and starch as raw materials and vegetable oil polyols, polyethylene glycol (PEG), and citric acid (CA) as additives. The effects of CA and PEG on the toughness of PLA/starch blends were analyzed using a mechanical performance test, scanning electron microscope analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, X-ray diffraction, rheological analysis, and hydrophilicity test. Results showed that the elongation at break and impact strength of the PLA/premixed starch (PSt)/PEG/CA blend were 140.51% and 3.56 kJ·m−2, which were 13.4 and 1.8 times higher than those of pure PLA, respectively. The essence of the improvement in the toughness of the PLA/PSt/PEG/CA blend was the esterification reaction among CA, PEG, and starch. During the melt-blending process, the CA with abundant carboxyl groups reacted in the amorphous region of the starch. The shape and crystal form of the starch did not change, but the surface activity of the starch improved and consequently increased the adhesion between starch and PLA. As a plasticizer for PLA and starch, PEG effectively enhanced the mobility of the molecular chains. After PEG was dispersed, it participated in the esterification reaction of CA and starch at the interface and formed a branched/crosslinked copolymer that was embedded in the interface of PLA and starch. This copolymer further improved the compatibility of the PLA/starch blends. PEGs with small molecules and CA were used as compatibilizers to reduce the effect on PLA biodegradability. The esterification reaction on the starch surface improved the compatibilization and toughness of the PLA/starch blend materials and broadens their application prospects in the fields of medicine and high-fill packaging.  相似文献   

16.
The reactive compatibilization of ethylene-propylene-diene (EPDM)-based dissimilar elastomer blends has been investigated in terms of mechanical properties and swelling degree. The use of mercapto-functionalized copolymers resulted in an improvement of mechanical properties of natural rubber-EPDM blends. The mercapto-groups are able to react with the carbon-carbon double bonds of the high diene rubber, resulting in a good interaction between phases. These interactions were confirmed by the amount of insoluble material obtained in non-vulcanized blends. From dynamic mechanical properties and swelling degree, one can suggest a covulcanization process in these blends cured with sulfur-based system. Blends composed by nitrile rubber with EPDM displayed good results in terms of mechanical properties when mercapto-functionalized EVA was employed instead of functionalized EPDM, probably because of the higher polarity of the former associated to its lower viscosity. Additionally, an improvement on mechanical properties was also achieved by using EPDM functionalized with mercapto or anhydride groups in combination with nitrile rubber functionalized with epoxy or oxazoline groups.  相似文献   

17.
In‐situ compatibilization of blends has been studied for the system oxazoline grafted polypropylene/carboxylic acid terminated polystyrene. The reactive blends exhibit much finer morphologies than the corresponding non‐reactive systems. Morphology is shown to depend on the degree of functionalization, viscosity ratio, blend composition, and mixing conditions.  相似文献   

18.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

19.
ABSTRACT

To investigate the effect of reactive compatibilization in the immiscible poly(ethylene terephthalate) (PET)/low-density polyethylene (LDPE) blend, ethylene-propylene copolymer-g-methacryloyl carbamate (MEPM) was prepared and used as a reactive compatibilizer. The inter-facial reaction of carbamate group in MEPM with OH/COOH in PET was confirmed by measuring the interfacial tension between the PET and LDPE using the breaking thread method. The two-step blending process strongly influenced the blend morphology at high concentration of the dispersed phase in the blend. The MEPM showed a discrepancy in the reactive compatibilization ability with a blend sequence in the blends of different dispersed phase concentration.  相似文献   

20.
Reactive compatibilization using liquid polybutadienes and dialkyl peroxides was studied in model low‐density polyethylene/polystyrene (4/1) blends and the commingled waste of composition similar to these blends. The influence of three types of lubricants (Ca stearate, stearic acid ‐ Loxiol G20 and paraffin ‐ Loxiol G22) on the structure and toughness of these blends was determined. In spite of the fact that in the waste material, a coarse morphology and poor toughness were found in comparison with the blend of virgin polyolefins, reactive compatibilization has approximately the same effect in both types of the blends as far as the structure parameters and mechanical behaviour are concerned. This effect is enhanced by addition of lubricants, the most efficient being the paraffin in the model blends, probably due to its partial miscibility with LDPE. In the commingled waste, liquid polybutadienes supported on precipitated SiO2 appear to be quite efficient. No influence of the reactive compatibilization on both the crystal modification and the crystalline content was observed in both types of these blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号