首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. IV. Formation and Structure of the Chromium Carbonyl Complexes of Tris(di-tert-butylphospha)heptaphosphanortricyclane (t-Bu2P)3P7 The reaction of (t-Bu2P)3P7 1 with Cr(CO)5 · THF in a molar ratio of 1:1 yields yellow crystals of (t-Bu2P)3P7[Cr(CO)5] 2 having the Cr(CO)5 group coordinated to a Pb atom (basal) of the three membered ring. With a molar ratio of 1:2 compounds 2 , (t-Bu2P)3P7[Cr(CO)5]2 3 , (t-Bu2P)3P7[Cr(CO)5][Cr(CO)4] 4 and (t-Bu2P)3P7[Cr(CO)4]2 5 were obtained. In 3 (yellow crystals) one Cr(CO)5 group is linked to a Pb atom, the other one to an exocyclic Pexo atom. On irradiation 3 loosing one CO group generates 4 (orange red crystals) with an unchanged Cr(CO)5 group linked to the Pb atom and a five membered chelate-like ring containing an apical Pa atom, two equatorial Pa atoms, one Pexo atom and the Cr atom of the carbonyl group. Compound 5 (orange red crystals) contains two such five membered rings. (t-Bu2P)3P7[Cr(CO)4]3 6 (red needles) is formed with Cr(CO)5 · THF in a molar ratio of 1 : 1. However, even with higher amounts of Cr(CO)5 · THF and after extended reaction times, only 6 is formed; no further Cr carbonyl group could be attached to the P skeleton. With Cr(CO)5 · NBD in a molar ratio of 1 : 1, (t-Bu2P)3P7[Cr(CO)4] 7 is produced from 1, and 5 with a molar ratio of 2 : 1. As in 4, the Cr(CO)4 group in 7 (orange crystals) participates in a five membered chelate-like ring. It was not possible to generate 6 from 5 with an excess of Cr(CO)4 · NBD and with extended reaction times. The molecular structures of the compounds were identified by investigating the 31P[1H] NMR spec-tra and considering especially the coordination shift, and by crystal structure determinations of 2 and 4. Compound 2 crystallizes in the space group PI (no.2) with a = 1566.2(4) pm, b = 2304.1(5) pm, c = 1563.3(4) pm,α = 95.57(3)°, β = 108.79(3)°, γ = 109.82(4)° and Z = 4 formula units in the elementary cell. Compound 4 crystallizes in the space group P 21 /n (no. 14) with a = 1416.6(5) pm, b = 2573.6(5) pm, c = 1352.9(4) pm,β = 99.17(5)° and Z = 4 formula units in the elementary cell.  相似文献   

2.
Synthesis and Spectroscopy of new Triphosphine Complexes The reaction of PCl3 with [HPPh2W(CO)5] in the presence of NEt3 affords stepwise the diand triphosphine complexes [Cl2PPPh2W(CO)5] and ClP[PPh2W(CO)5]. Triphosphine complexes of the type [{M′(CO)5}(H)P{PPh2M(CO)5}] (M = M′ = Cr or Mo) are not formed from the reaction of HP[PPh2M(CO)5] with [M′(CO)5thf]. However they were prepared by reaction of [M′(CO)5PCl3] with Li[PPh2M(CO)5]. The products were characterized by NMR, IR spectroscopy, and mass spectrometry.  相似文献   

3.
Gallium-, Indium-Manganese-, and Thallium-Rhenium Carbonyl Compounds Compounds of type Na{Cl4?nM[Mn(CO)5]n} (M ? Ga, In; n = 1, 2, 3) were prepared by reaction of the Lewis acids MCl3 and NaMn(CO)5. Instead of the sodium salts were obtained the compounds (C3H7CO2)2InMn(CO)4L (Indium atom with the coordination number 5) from Indium(III) butyrate with two carboxylate groups bonded as chelate ligands and NaMn(CO)4L [L ? CO, P(C6H5)3] in the molar ratio 1:1. By reacting TlCl with NaRe(CO)5 i.r. spectroscopic measurements of the solution pointed out the intermediate product TlRe(CO)5, which was unstable against a disproportionation reaction into Tl and Tl[Re(CO)5]3. The last named compound delivered as a thermal decomposition product Re2(CO)8[μ-TlRe(CO)5]2. I.r. bands of the new compounds were assigned.  相似文献   

4.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with diphenyldiazomethane leads to [{W(CO)5}Cp*P=NN{W(CO)5}=CPh2] ( 2 ). Compound 2 is a rare example of a phosphadiazadiene ligand (R‐P=N?N=CR′R′′) complex. At temperatures above 0 °C, 2 decomposes into the complex [{W(CO)5}PCp*{N(H)N=CPh2)2] ( 3 ), among other species. The reaction of the pentelidene complexes [Cp*E{W(CO)5}2] (E=P, As) with diazomethane (CH2NN) proceeds differently. For the arsinidene complex ( 1 b ), only the arsaalkene complex 4 b [{W(CO)5}21:2‐(Cp*)As=CH2}] is formed. The reaction with the phosphinidene complex ( 1 a ) results in three products, the two phosphaalkene complexes [{W(CO)5}21:2‐(R)P=CH2}] ( 4 a : R=Cp*, 5 : R=H) and the triazaphosphole derivative [{W(CO)5}P(Cp*)‐CH2‐N{W(CO)5}=N‐N(N=CH2)] ( 6 a ). The phosphaalkene complex ( 4 a ) and the arsaalkene complex ( 4 b ) are not stable at room temperature and decompose to the complexes [{W(CO)5}4(CH2=E?E=CH2)] ( 7 a : E=P, 7 b : E=As), which are the first examples of complexes with parent 2,3‐diphospha‐1,3‐butadiene and 2,3‐diarsa‐1,3‐butadiene ligands.  相似文献   

5.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5?thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B?B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

6.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5⋅thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B−B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

7.
Niobium and Tantalum Complexes with P2 and P4 Ligands The photolysis of [Cp″Ta(CO)4] 1 (Cp″ = C5H3tBu2?1,3) and P4 affords Cp″(CO)2Ta(η4?P4) 2 , [{Cp″(CO)Ta}2(m??η2:2?P2)2] 3 and [Cp3″(CO)3Ta3(P2)2] 4 . In a photochemical reaction 2 and [Cp*Nb(CO)4] 5 form [{Cp*(CO)Nb}{Cp″(CO)Ta}(m??η2:2?P2)2] 6 and [{Cp*(CO)2Nb} {Cp*Nb}{Cp″(CO)Ta}(m?32:1:1?P2)2] 7 , a compound with the novel m?32:2:1?P2-coordination mode. The reaction of 2 and [Cp*Co(C2H4)2] 8 leads to [{Cp*Co} {Cp″(CO)Ta}(m??η2:2?P2)2] 9 , a heteronuclear complex with an ?early”? and a ?late”? transition metal. Complexes 2, 3, 7 and 9 have been further characterized by X-ray structure analyses.  相似文献   

8.
Reactions of some Sulfur-Fluorine Compounds with Compounds of Transition Metals; Synthesis and Spectroscopic Investigation of Sulfito Complexes, involving MnII, Mo0, and W0 In the oxidative addition reactions of sulfuryl fluoride ( 1 ) and of methanesulphonic acid fluoride ( 2 ) with η2-ethylene-bis(triphenylphosphine)platinum(0) the novel ionic binuclear tetrakis(triphenylphosphine)-(μ-fluoro)-(μ-peroxo)-platinum(II)-fluorosulfonate and -methylsulfonate complexes 3 a and 3 b were formed. O,O-Sulfito-manganese(II) tricarbonyl 5 a and the binuclear μ-disulfito-dimanganese decacarbonyl complex 6 a were obtained in the reaction of disulfuryl difluoride ( 4 ) with the carbonyl metalate complex, Na+[Mn(CO)5]?. In this redox reaction several further products (e.g., CO, SO2F2 ( 1 ) and Mn2(CO)10) were formed and were determined quantitatively. In the presence of acetonitrile the acetonitrile-O,O-sulfito-manganese(II) tricarbonyl complex 5 b was isolated. The new binuclear complexes, bis(η5-cyclopentadienyl)-μ-disulfito-dimetalhexacarbonyls ( 6 b : metal = Mo0 and 6 c : metal = W0) were obtained in the reaction of 4 with the carbonyl metalates Na+[CpM(CO)3]? (M?Mo1, W1; Cp = cyclopentadienyl). Further products (e.g., CO, SO2F2 ( 1 ) and [CpM(CO)3]2, M?Mo, W) were formed and were determined quantitatively. The validity of the concept of hard and soft acids and bases (HSAB-concept) and of the 18-valence-electron rule (18-VE-rule) could not be confirmed in all cases. The characterization of 3a, 3b, Sb, 6b and 6c was based on their IR and NMR spectra, and in one case, on the mass spectra ( 5b ). For 3a and 3b the dynamic behaviour at room temperature in CD2Cl2 and CD3OD was studied by 31P-NMR spectroscopy. The results are interpreted in terms of exchange processes in solution between the coordinated μ-fluoride and the solvent ligand or the uncoordinated anion. 5a and 6a and the by-products (e.g., CO and SO2F2 ( l )), which were formed in the redox reactions, were identified by their infrared spectra.  相似文献   

9.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII Carbonyl Complexes of the Heptaphosphane(3) iPr2(Me3Si)P7 From the reaction of iPr2(Me3Si)P7 1 with one equivalent of Cr(CO)5THF the yellow products iPr2(H)P7[Cr(CO)5] 2 and iPr2(Me3Si)P7[Cr(CO)5] 3 were isolated by column chromatography on silicagel. The P? H group in 2 results from a cleavage of the P? SiMe3 bond during chromatography. The Cr(CO)5 group in 2 is linked to an iPr? Pe atom, in 3 to the Me3Si? Pe atom of the P7 skeleton. The substituents do not force the formation of a single isomer; nevertheless 3 ist considerably favoured as compared to 2 . From the reaction of 1 with 2 equivalents of Cr(CO)5THF the yellow iPr2(H)P7[Cr(CO)5]2 4 was isolated bearing one Cr(CO)5 group at an iPr? Pe atom, the other one at a Pb atom of the P7 skeleton. Compound 3 yields with Cr(CO)4NBD the red iPr2(Me3Si)P7[Cr(CO)5][Cr(CO)4] 5 . Three isomers of 5 appear. Two Pe atoms of 5 are bridged by the Cr(CO)4 group, the third Pe atom is linked to the Cr(CO)5 ligand. iPr2(H)P7[Fe(CO)4] was isolated from the reaction of 1 with Fe2(CO)9. 31P NMR and MS data are reported.  相似文献   

10.
The reaction of the phosphinidene and arsinidene complexes [Cp*E{W(CO)5}2] (E=P ( 1 a ), As ( 1 b ); Cp*=C5Me5) with carbodiimides leads to the new four‐membered heterocycles of the type [Cp*C(NR)2E{W(CO)5}2] (E=P: R=iPr ( 2 a ), Cy ( 3 a ); E=As: R=iPr ( 2 b ), Cy ( 3 b )). The reaction of phosphinidene complex 1 a with alkyl azides yields the triazaphosphete derivatives [Cp*P{W(CO)5}N(R)NN{W(CO)5}] (R=Hex, Cy) ( 4 ). These unprecedented N3P four‐membered triazaphosphete complexes can be regarded as stabilized intermediates of the Staudinger reaction, which have not been previously isolated. All of the isolated products were characterized by NMR, IR spectroscopy, mass spectrometry, and by single‐crystal X‐ray diffraction analysis.  相似文献   

11.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

12.
The successive reaction of (CO)6M with Na[NCR21] and [Et3O]BF4 yields (CO)5M[C(NCR21)OEt] (II: M = Cr; III: M = W; CR21 = C(C6H4Br-p)2 (a), CPh2 (b), C(C6H4OMe-p)2 (c), C(C6H4)2O (d), CBu2tt (e)). Hexacarbonyltungsten, (CO)6W, reacts with Na[NCPh2] and MeOSO2F to give (CO)5W[C(NCPh2) OMe] (IV). X-Ray analysis of IIe shows that: (1) the CNC fragment is almost linear (171.7°); (2) the two NC bond lengths are equal within experimental error; and (3) the O,C,Cr,N plane is perpendicular to the C(Me3),C,N,C(Me3) plane (90.0°). Therefore compounds II–IV are best described as 1-alkoxy-2-azaallenyl complexes.  相似文献   

13.
Metal Complexes with Anionic Ligands of Elements of the Main Group IV. VIII Pentacarbonyltrihalogenostannidometalate(O) Complexes of Chromium, Molybdenum, and Tungsten with Fluorine and Iodine Containing Trihalogenostannido Ligands In methylenechloride [As(C6H5)4][SnF3] readily reacts with the metalhexacarbonyls forming the arsoniumsalts of the pentacarbonyltrifluorostannidometalate(O) complexes, [M(CO)5SnF3]? (M ? Cr, Mo, W). Exclusively by the reaction of the intermediately formed complex Cr(CO)5THF only one pure triiodostannidometalate(O) Complex, [N(C2H5)4][Cr(CO)5SnJ3], could be isolated. The trihalogenostannidometalate(O) complexes [M(CO)5SnClX2]? (X ? F: M ? Cr, Mo, W; X ? J: M ? Cr) could be prepared by SnX2-insertion reactions of the [M(CO)5Cl]? complexes. The bonding properties of the halogenostannide ions are discussed on the bases of the IR spectra of their metalate(O) complexes.  相似文献   

14.
Oxidative addition of diphenyl disulfide to the coordinatively unsaturated [Mn(CO)5]? led to the formation of low-spin, six-coordinate cis-[Mn(CO)4(SPh)2]?. The complex cis-[PPN][Mn(CO)4(SPh)2] crystallized in monoclinic space group P21/c with a = 9.965(2) Å, b = 24.604(5) Å, c = 19.291(4) Å, β = 100.05(2)°, V = 4657(2)Å3, and Z = 4; final R = 0.036 and Rw = 0.039. Thermal transformation of cis-[Mn(CO)4(SPh)2]? to [(CO)3Mn(μ-SPh)3Mn(CO)3]? was completed overnight in THF at room temperature. Additionally, reaction of [Mn(CO)5]? and PhSH in 1:2 mole ratio also led to cis-[PPN](Mn(CO)4(SPh)2]. Presumably, oxidative addition of PhSH to [Mn(CO)4]? was followed by a Lewis acid-base reaction to form cis-[Mn(CO)4(SPh)2]? with evolution of H2.  相似文献   

15.
Complexes Containing Antimony Ligands: [tBu2(Cl)SbW(CO)5], [tBu2(OH)SbW(CO)5], O[SbPh2W(CO)5]2, E[SbMe2W(CO)5]2 (E = Se, Te), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] Syntheses of [tBu2(Cl)SbW(CO)5] ( 1 ), [tBu2(OH)SbW(CO)5] ( 2 ), O[SbPh2W(CO)5]2 ( 3 ), Se[SbMe2W(CO)5]2 ( 4 ), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] ( 5 ) Te[SbMe2W(CO)5]2 ( 6 ) and crystal structures of 1 – 5 are reported.  相似文献   

16.
Bifunctionalized 1 H‐Phosphirene and g1‐1‐Phosphaallene Tungsten Complexes The tungsten(0) complex [{(Me3Si)2HCPC(Ph)=N}W(CO)5] 1 reacts upon heating with acetylene derivatives 2 a–d in toluene to form benzonitrile and the complexes [{(Me3Si)2HCPC(R)=COEt} · W(CO)5] 5 a–d ( 5 a : R = SiMe3; 5 b : R = SiPh3; 5 c : R = SnMe3; 5 d : R = SnPh3) and [{(Me3Si)2HCP=C=C(OEt)R} · W(CO)5] 6 a, b ( 6 a : R = SnMe3; 6 b : R = SnPh3), which have been isolated by chromatography; complexes 5 c and 6 a have been characterized as mixtures. Spectroscopic and mass spectrometric data are discussed. The crystal structure of the compound 5 a was determined by X‐ray single crystal structure analysis ( 5 a : space group P21/n, Z = 4, a = 977.6(2) pm, b = 1814.6(4) pm, c = 1628.0(4) pm, β = 93.95(2)°).  相似文献   

17.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) (Cp*=C5Me5) with the anionic cyclo-Pn ligand complex [(η3-P3)Nb(ODipp)3] ( 2 , Dipp=2,6-diisopropylphenyl) resulted in the formation of [{W(CO)5}233:1:1-P4Cp*}Nb(ODipp)3] ( 3 ), which represents an unprecedented example of a ring expansion of a polyphosphorus-ligand complex initiated by a phosphinidene complex. Furthermore, the reaction of the pnictinidene complexes [Cp*E{W(CO)5}2] (E=P: 1 a , As: 1 b ) with the neutral complex [Cp′′′Co(η4-P4)] (Cp′′′=1,2,4-tBu3C5H2) led to a cyclo-P4E ring (E=P, As) through the insertion of the pentel atom into the cyclo-P4 ligand. Starting from 1 a , the two isomers [Cp′′′Co(μ34:1:1-P5Cp*){W(CO)5}2] ( 5 a , b ), and from 1 b , the three isomers [Cp′′′Co(μ34:1:1-AsP4Cp*){W(CO)5}2] ( 6 a – c ) with unprecedented cyclo-P4E ligands (E=P, As) were isolated. The complexes 6 a – c represent unique examples of ring expansions which lead to new mixed five-membered cyclo-P4As ligands. The possible reaction pathways for the formation of 5 a , b and 6 a – c were investigated by a combination of temperature-dependent 31P{1H} NMR studies and DFT calculations.  相似文献   

18.
Attempts to synthesize complexes of group 6 carbonyl compounds [M(CO)6] (M = Cr, Mo, W) with the carbone C(PPh3)2 ( 1 ) via the photo chemically created adducts [(CO)5M(THF)] lead to quantitative formation of the salts [HC(PPh3)2]2[M2(CO)10] ( 2 , Cr; 3 , Mo; 4 , W). Alternatively, a long-time thermal reaction of [Mo(CO)6] performed with 1 in THF generates a series of products initiated by a Wittig-type reaction. In addition to 3 , minor amounts of [(CO)5MoCCPPh3] ( 8 ), [(CO)5MoO2CC{PPh3}2] ( 5 ), and the carbonate complexes [HC(PPh3)2]2[(CO)5Mo(CO3)Mo(CO)4] ( 6 ) and [HC(PPh3)2]2[(CO)4Mo(CO3)Mo(CO)4] ( 7 ) were found. Compounds 2 , 3 , 5 , 6 , and 7 were characterized by X-ray analyses, 31P NMR, and IR spectroscopy. The water, necessary for the formation of the carbonate, stems from decomposition of THF.  相似文献   

19.
Iron and Nickel Carbonyl Complexes with Substituted Distibane and Antimonido Ligands The reactions of enneacarbonyldiiron with substituted distibanes yield mononuclear complexes [Fe(CO)4SbR2SbR2] (R = C2H5, t-C4H9), a dinuclear complex [(CO)4FeSbPh2SbPh2Fe(CO)4] and antimonido-bridged compounds [(CO)3Fe(SbR2)2-Fe(CO)3] (R = C2H5, C6H5). Product of the reaction of tetramethyldistibane with tetracarbonylnickel is the binuclear complex [(CO)3NiSbMe2SbMe2Ni(CO)3]. The 1H-n.m.r., i.r., and mass spectra of the new compounds are reported.  相似文献   

20.
The reaction of K2Fe(CO)4 with (CO)4 M(AsMe2Cl)2 (M  Cr, Mo, W) gives low yields of the new heterodinuclear complexes (CO)4M-[μ-AsMe2]2-Fe(CO)3 with CrFe, MoFe and WFe bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号