首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of a trigonal bipyramidal structure for [Cu(tet b)X]+ (blue) (where X=Cl, Br, I) is supported by the observation of two distinct d-d bands, which are assigned as and d, dxy→d and dxz, dyzd transitions respectively. The stability constants for the formation of [Cu(tet b)X]+ (blue) from [Cu(tet b)]z+ (blue) and X? were determined by spectrophotometric method at 25°, 35° and 45°C. The corresponding δH° and δS° values were obtained from the variations of the stability constants between 25° and 45°C  相似文献   

2.
An investigation was conducted into the effects of water content (R) on the ultimate tensile properties of nanocomposite hydrogels (NC gels) based on poly(N‐isopropylacrylamide)/clay networks. Rubbery NC gels with low clay contents (<NC10) exhibited unique changes in their stress–strain curves, depending on the R. At high R, where PNIPA chains are fully hydrated, NC gels retained their rubbery tensile properties, whereas they changed to exhibit plastic‐like deformations with decreasing R. Consequently, for a series of NC gels with different R, a failure envelope was obtained by connecting the rupture points in the stress–strain curves. Here, the counterclockwise movement was observed as either the R decreased or the strain rate increased. This seemed to be analogous to that of a conventional elastomer (e.g., SBR), although the mechanisms are different in the two cases. From the R and Cclay dependences of the ultimate properties, three critical values of R were defined, where R showed a maximum strain at break, a steep increase in initial modulus, and onset of brittle fracture. Compared with NC gels, OR gels (chemically crosslinked hydrogels) showed similar but very small changes in their stress–strain curves on altering R, whereas LR (viscous PNIPA solution) showed a monotonic decrease (increase) in εb (Ei) with decreasing R. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2328–2340, 2009  相似文献   

3.
Energy-deformation characteristics for the primary T, S, and U conformational units of tie molecules were obtained from the analysis of data generated from a constrained minimization algorithm. Energy-deformation profiles (covering the range from compact equilibrium defect structures to the fully extended chain) are reported for the S0 and S1 members of the Sλ family and for the U00 member of the Umn family. Estimates of the energy content V0 and the elastic modulus E were obtained from the computed energy-deformation data in the vicinity of the equilibrium Structure—S0 → {60°, 180°, ?60°}, V = 1.7 kcal/mole, E = 60 kcal/cm3 [250 × 1010 dyn/cm2];S1 → {60°, 180°, 180°, 180°, ?60°}: V = 1.7 kcal/mole, E = 25 kcal/cm3 [100 × 1010 dyn/cm2]; and U00 → {60°, 180°, 60°, 180°, 60°}: V = 2.7 kcal/mole, E = 80 kcal/cm3 [340 × 1010 dyn/cm2]. Although the elastic modulus of the U00 unit is comparable to the elastic modulus of the fully extended chain, the highenergy content of this unit (V0 = 2.7 Kcal/mole) prohibits a significant population and thereby mitigates an appreciable reinforcing effect from this rigid unit. A model for a surrogate force constant is introduced to generalize the results from this study to any member of the Sλ or Umn family as well as any combination of Sλ and Umn units. This generalization provides a basis for estimating the deformation characteristics of tie molecules comprised of various populations of these primary conformational building blocks.  相似文献   

4.
The reaction of sulfur with primary or secondary amines and formaldehyde has been studied. A simple one step process for the preparation of thioformamides (RR′NCHS; R ? H, R′ ? CH3, C2H5; R ? R′ ? CH3, C2H5; R+R′ ? ? (CH2), ? (CH2), ? C2H4OC2H) and the amine salts of N, N-dialkyl-dithiocarbamic acids (R2NCS2 · H2NR2, R ? CH3, C2H5, C4H9; R2 ? ? (CH2), ? (CH2), ? C2H4OC2H) is reported. In addition, the isolation of diethylamidosulfoxylic acid, (C2H5)2NSOH · 1/2 H2O, the first derivative of a new class of compounds, is described. The physical properties and the 1H-NMR. spectra of the above mentioned compounds are given.  相似文献   

5.
Gel points in random polymerizations of the general type ΣiRA + ΣjRB in which A-groups react with A- and B-groups, and B-groups react only with A-groups are considered. (The symbols Σi and Σi signify that the A- and B-bearing reactants RA and RB can be mixtures of monomers of different functionalities, denoted generally as fai and fbj.) The usual case of A-groups reacting only with B-groups is a special case of the present theory. The effects of chemical kinetics, the competitive reaction of A- and B-groups, are separated from the generalized statistical condition for gelation. The former are used to define reaction curves and the latter, gelation curves. Both types of curve are represented as pa as a function of pb. For a given polymerization, gelation occurs when the reaction curve and the gelation curve intersect. When A-groups react only with B-groups, the gel points are those for the usual type of ΣiRA + ΣjRB polymerization, and, in the limit of A-groups only reacting with A-groups, the gel points are those for ΣiRA self polymerizations.  相似文献   

6.
The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+$ step and k2 = 1.1 × 103 M?1 s?1 for the ${\rm FeSO}_4^+ + {\rm SO}_4^{2-} \stackrel{k_2}{\rightleftharpoons}\, {\rm Fe}({\rm SO}_4)_2^-$ step. The mono‐sulfate complex is also formed in the ${\rm Fe}({\rm OH})^{2+} + {\rm SO}_4^{2-} \stackrel{k_{1b}}{\longrightarrow} {\rm FeSO}_4^+$ reaction with the k1b = 2.7 × 105 M?1 s?1 rate constant. The most surprising result is, however, that the 2 FeSO? Fe3+ + Fe(SO4) equilibrium is established well before the system as a whole reaches its equilibrium state, and the main path of the formation of Fe(SO4) is the above fast (on the stopped flow scale) equilibrium process. The use and advantages of our recently elaborated programs for the evaluation of equilibrium and kinetic experiments are briefly outlined. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 114–124, 2008  相似文献   

7.
The overall photobromination reactions have been studied using a competitive technique. Relative Arrhenius parameters were obtained for the rate-determining step These were placed on an absolute basis using previous-absolute values of A and E for RFI=CF3I. The activation energies were used to calculate bond dissociation energies D(R? I) with the following results:
RF? E16 D(RF?I)(kcal/mole)
CF3I a a E16 from [1]
10.8 52.6
C2F5I 8.8 50.6
n-C3F7I 7.4 49.2
i-C3F7I 7.5 49.2
n-C4F9I 6.7 48.4
  • a E16 from [1]
The D(RI) are compared with related D(R? I) and it is concluded that for a given alkyl group RH and the corresponding perfuloroalkyl group RF, D(RI) > D(RI) whereas it has previously been found that D(RX;) < D(RX) where X is not iodine.  相似文献   

8.
The kinetic isotope effects in the reaction of methane (CH4) with Cl atoms are studied in a relative rate experiment at 298 ± 2 K and 1013 ± 10 mbar. The reaction rates of 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl radicals are measured relative to 12CH4 in a smog chamber using long path FTIR detection. The experimental data are analyzed with a nonlinear least squares spectral fitting method using measured high‐resolution spectra as well as cross sections from the HITRAN database. The relative reaction rates of 12CH4, 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl are determined as k/k = 1.06 ± 0.01, k/k = 1.47 ± 0.03, k/k = 2.45 ± 0.05, k/k = 4.7 ± 0.1, k/k = 14.7 ± 0.3. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 110–118, 2005  相似文献   

9.
Extensive Hylleraas–CI calculations for the lowest Po states of 4He were performed. The dependence of the variational energy values Eκ on the mass parameter κ given by κ=m/m is discussed. Furthermore, lower bounds to Eκ were calculated using variance minimization. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 25–30, 1998  相似文献   

10.
Reactions of oxygen atoms with ethylene, propene, and 2-butene were studied at room temperature under discharge flow conditions by resonance fluorescence spectroscopy of O and H atoms at pressures of 0.08 to 12 torr. The measured total rate constants of these reactions are K = (7.8 ± 0.6)·10?13cm3s?1,K = (4.3 ± 0.4) ± 10?12 cm3 s?1, K = (1.4 ± 0.4) · 10?11 cm3 s?1. The branching ratios of H atom elimination channels were measured for reactions of O atoms with ethylene and propene. No H-atom elimination was found for the reaction of O-atoms with 2-butene. A redistribution of reaction O + C2 channels with pressure was found. A mechanism of the O + C2 reaction was proposed and the possibility of its application to other olefins is discussed. On the basis of mechanism the pressure dependence of the total rate constant for reaction O + C2 was predicted and experimentally confirmed in the pressure range 0.08–1.46 torr.  相似文献   

11.
Replacing the 3- and 3′′-protons of the ligand 2,6-di(pyrazol-1-yl)pyridine L by mesityl groups changes the electronic ground state of [Cu(L)2]2+ complexes from {d}1 to {d}1. This is the best example so far for a “homoleptic” Jahn–Teller-compressed six-coordinate CuII complex.  相似文献   

12.
The Correlation of Tolman's Cone Angles with 1J of Phosphonium Fluorosulfonates A 1H-n.m.r. study of three series of phosphonium salts [HPR3?nHn]X, and [HPPh2R1?nHn]X and (R = aliphatic substituent and H, X = SO3 F) gives a good relationship between increasing values of 1J versus decreasing size of substituted phosphines. A method to obtain Tolman's cone angle is described.  相似文献   

13.
Two series of neopentylbenzenes with one or two substituents on the benzyl group have been synthesized. In one series the substituents were H, F, Cl, Br, I, OCH3, OCOCH3, OSi(CH3)3 CH3 and CH2CH3, and in the other OH and R [R ? H, CH3, CH2CH3, (CH2)3CH3, CH(CH3)2 and C(CH3)3]. Barriers to internal C? C and C? C rotation have been estimated by 13C NMR band shape methods. Estimated barriers were found to increase as the size of the substituent increases. The results are discussed in terms of possible initial and transition states, based on summations of results from molecular mechanics (MM) calculations, using the Allinger MMP1 program. Barriers estimated experimentally are compared with results from other systems found in the literature.  相似文献   

14.
The electronic and magnetic properties of SrFeO2 with different magnetic configurations have been calculated via the plane‐wave pseudopotential density functional theory method, using the experimental lattice parameters. The results give an antiferromagnetic ground state for SrFeO2 with an absolute magnetic moment agreeing very well with the experimental report. In comparison with the counterparts whose magnetic moments are parallel to the c axis, the structures with spin moments parallel to the a (or b) axis exhibit no observable preference in total energy, but show different density distributions of the Fe 3d and Fe 3d states. The square‐planar crystal field splits the Fe 3d orbitals into a high‐level d, a low d, and intermediate dxy and dxz or dyz components. The exchange splitting is larger than the crystal‐field splitting, resulting in the high‐spin Fe 3d states. Referred to the triplet O2, the O‐vacancy formation energy from SrFeO3 to SrFeO2 has been deduced as well, along with its dependence on the temperature and O2 partial pressure. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

15.
Hexafluoroacetone (HFA) and O2 were photolyzed at 147.0 nm to investigate their use in chemical actinometry. The products, CO for the former and O3 in the latter case, were monitored. For accurate comparison, both of these substances were irradiated by a single light source with two identical reaction cells at 180° to each other. The light intensities I were measured under the same integrated as well as instantaneous photon flux based on ? and ?CO (quantum yield) as 2 and 1, respectively. Optimum conditions for maximum product yield were 5.0 torr HFA pressure and an O2 flow rate of 200 ml/min at 1 atm pressure for a 20-minute photolysis period. For light intensity variations between 1.09 × 1014 and 2.10 × 1015 photons absorbed/sec, the ratio I/IHFA was found to be unity. Calibration with the commonly used N2O actinometer for a ? value of 1.41 showed that I/IHFA and I/I are unity. Both HFA and O2 are suitable chemical actinometers at 147.0 nm with ?CO and ? of 1 and 2, respectively. The light intensity determination in the first case involves the measurement of only one product which is noncondensible at 77°K, whereas wet analysis for O3, the only product, in the second actinometer is necessary. Both of these determinations are quite simple and are preferable over product analysis in N2O actiometry, wherein N2 separation from other noncondensibles at 77°K is required.  相似文献   

16.
This contribution describes the reactivities of CO2, CO, O2, and ArNC with the pincer‐type complexes [(κPCP′‐POCOP)NiX] (POCOP=(R2POCH2)2CH; R=iPr; X=OSiMe3, NArH; Ar=2,6‐iPr2C6H3). Reaction of the amido derivative with CO2 and CO leads to a simple insertion into the Ni?N bond to give stable carbamate and carbamoyl derivatives, respectively, the pincer ligand backbone remaining intact in both cases. In contrast, the analogous reactions with the siloxide derivative produced kinetically labile insertion products that either revert to the starting material (in the case of CO2) or react further to give the mixed‐valent, dinickel species [(POCOP)NiII{μ,κOPP′‐OCOCH(CH2CH2OPR2)2}Ni0(CO)2]. The zero‐valent center in the latter compound is ligated by a new ligand arising from transformation of the POCOP ligand backbone. The carbonylation and carboxylation of the siloxido derivative also produced minor quantities of a side‐product identified as the trinickel species, [{(η3‐allyl)Ni(μOP‐R2PO)2}2Ni], arising from total dismantling of the POCOP ligand. Similar reactivities were observed with isonitrile, ArNC: reaction with the siloxido derivative resulted in a complex sequence of steps involving initial insertion, a 1,3‐hydrogen shift, and an Arbuzov rearrangement to give [Ni(CNAr)4] and a methacrylamide based on fragments of the POCOP ligand. Oxygenation of the amido and siloxido derivatives led to the phosphinate derivative, [(POCOP)Ni(OP(O)R2)], arising from oxidative transformation of the original ligand frame; the reaction with the Ni‐NHAr derivative also gave ArHNP(O)R2 through a complex N?P bond‐forming reaction.  相似文献   

17.
Kinetic solvent isotope effects (KSIE) were measured for the hydrolyses of acetals of benzaldehydes in aqueous solutions covering the pH (pD) range of 1–6. For p-methoxybenzaldehyde diethyl acetal, k/k = 1.8–3.1, depending on the procedure used to calculate the KSIE and on the pH (pD) range used as the basis for k(k). It is shown that this variation is an experimental artifact, and is a characteristic of KSIE measurements in general. It is recommended that k be calculated from a least-squares fit of data to the equation kobs = k[L+], and that the KSIE be reported as k/k. The limitation remains, however, that the KSIE measured for a variety of substances over quite different pH (pD) ranges may not be comparable to more than ?20%. The source of these observations is discussed in terms of small changes in the activity coefficient ratios (a specific salt effect), including the solvent isotope effect on the activity coefficient ratio [eq. (3)].  相似文献   

18.
Electrostatic solvation free energies were computed for several small neutral bases and their conjugate acids using a continuum solvation model called the self-consistent isodensity polarizable continuum model (SCIPCM). The solvation energies were computed at the restricted Hartree–Fock (RHF) and second-order Møller–Plesset (MP2) levels of theory, as well as with the Becke3–Lee–Yang–Parr (B3LYP) density functional theory, using the standard 6–31G** Gaussian basis set. The RHF solvation energies are similar to those computed at the correlated MP2 and B3LYP theoretical levels. A model for computing protonation enthalpies for neutral bases in fluorosulfonic acid solvent leads to the equation ΔH(B)=−PA(B)+ΔEt(BH+)−ΔEt(B)+β, where PA(B) is the gas phase proton affinity for base B, ΔEt(BH+) is the SCIPCM solvation energy for the conjugate acid, and ΔEt(B) is the solvation energy for the base. A fit to experimental values of ΔH(B) for 10 neutral bases (H2O, MeOH, Me2O, H2S, MeSH, Me2S, NH3, MeNH2, Me2NH, and PH3) gives β=238.4±2.9 kcal/mol when ΔΔEt is computed using the 0.0004 e⋅bohr−3 isodensity surface for defining the solute cavity at the RHF/6–31G** level. The model predicts that for carbon monoxide ΔH(CO)=10 kcal/mol. Thus, protonation of CO is endothermic, and the conjugate acid HCO+ (formyl cation) behaves as a strong acid in fluorosulfonic acid. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 250–257, 1998  相似文献   

19.
The NMR spectra of fifteen para-substituted acetanilides, XC6H4·NH·CO·CH3 (X = NH·CO·Me; NH2; CO·OEt; COOH; Cl; OEt; F; H; OMe; CH3; NO2; C6H5; ? N?N? C6H5; Me3Si), have been recorded. δ and δNH are linearly related to Hammett's σp constant. The coupling J (o-H? H) between aromatic protons is mainly dependent on σR0. J(13C? H), in methyl group is approximatively constant in the series.  相似文献   

20.
The kinetics of the reaction of “living” poly(α-methylstyrl sodium, potassium, and cesium) with t-butyl chloride have been studied spectrophotometrically in tetrahydrofuran (THF) in the temperature range 283–303 K. The reactions, when the free ions present in solution are suppressed by tetraphenylboron salt, are first order with respect to both living ends and halide concentrations. Additions of tetraphenylboron salts produce a slight retardation effect on the rate of reaction in the case of sodium, indicating only a small contribution of free ions to the overall rate; in the case of potassium, there is no apparent effect. Analysis of the data indicates that the free ion is approximately 30 times more reactive than the sodium ion pair. The Arrhenius plots for contact ion-pair termination are linear and the activation energies and preexponential factors determined are E = 38.6 kJ mole?1, log A = 4.44 liter mole?1 sec?1 and E = 46.0 kJ mole?1, log A = 5.10 liter mole?1 sec?1. The reaction mechanism is interpreted in terms of elimination plus some side reaction to produce two unexpected reaction products—isobutane and a 315–320-nm absorbing grouping in the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号