首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fifteen compounds of compositionMPd2 Pn 2 (M = alkaline earth or rare earth metal,Pn = As, Sb, Bi) were prepared. TheirGuinier powder patterns show that the arsenides crystallize with the ThCr2Si2 type structure, the bismuthides with the closely related CaBe2Ge2 type structure. The antimonides most likely also have the CaBe2Ge2 structure as is demonstrated by a structure refinement of EuPd2Sb2 from single crystal X ray data (R = 0.039 for 366 independent structure factors and 15 variable parameters). The structure of SrPd2As2 (ThCr2Si2 type) was refined to a residual ofR = 0.020 for 182F values and 9 variables. EuPd2Sb2 is paramagnetic and a metallic conductor. A comparison of the cell volumes suggests intermediate valency for Eu in EuPd2As2.Chemical bonding and especially the reasons for the adoption of the ThCr2Si2 or CaBe2Ge2 type structures by these compounds are discussed. It is suggested that in going from the phosphides to the bismuthides the ThCr2Si2 structure is loosing and the CaBe2Ge2 structure is gaining stability due to decreasing Pd-Pd bonding and increasing Pd-pnictogen bonding. This trend is caused by the increasing size of the pnictogen component.
  相似文献   

2.
New AB2X2 Compounds with CaBe2Ge2 Structure Crystal structure of ternary RELi2Sb2 compounds (RE = Ce, Pr, Nd) is reported. The compounds are isotypic and crystallize tetragonally in the CaBe2Ge2 structure (space group P4/nmm), which is a modified type of the ThCr2Si2 structure.  相似文献   

3.
Polymorphism of APd2X2-Compounds (A = Sr, Ba; X = As, Sb) SrPd2Sb2 crystallizes at room temperature in the CaBe2Ge2-type structure (lattice constants see “Inhaltsübersicht”); a high-temperature modification with ThCr2Si2-type structure was obtained by quenching samples from above 730°C. The same structure was found for the high-temperature modification of BaPd2As2 which can be prepared by quenching from above 720°C. For (ThCr2Si2-structure) no phase transition could be observed.  相似文献   

4.
ACu9X4 ‐ New Compounds with CeNi8, 5Si4, 5 Structure (A: Sr, Ba; X: Si, Ge) The new compounds SrCu9Si4 (a = 8.146(1), c = 11.629(2)Å), BaCu9Si4 (a = 8.198(2), c = 11.735(2)Å), SrCu9Ge4 (a = 8.273(2), c = 11.909(5)Å), and BaCu9Ge4 (a = 8.338(4), c = 12.011(7)Å) are formed by reaction of the elements at 1000° ‐ 1100 °C. They are isotypic (I4/mcm, Z = 4) and crystallize in an ordered variant of the cubic NaZn13 type structure, also built up by the binary phase BaCu13. In the ternary compounds the positions of Cu2 are orderly occupied by copper and silicon and germanium, respectively. This results in a lowering of symmetry and a distortion of the polyhedra. The metallic conductivity of the compounds was confirmed by measurements on BaCu9Si4.  相似文献   

5.
About Polymorphism of SrNi2P2 and Crystal Structure of BaNi2P2 SrNi2P2 and BaNi2P2 were prepared by heating mixtures of the elements and investigated by single crystal X-ray methods. The Sr compound at room temperature crystallizes in a superstructure of the ThCr2Si2 type (NT-phase; Immm; Z = 6; a = 3.951(2), b = 11.853(2), c = 10.432(2) Å), which is caused by displacements of the atoms from the ideal positions; the P? P distances are 2.45 and 3.28 Å. With increasing temperature at 45°C (ambient pressure) and increasing pressure at 4 kbar (room temperature) respectively the compound undergoes first order phase transitions and crystallizes after that in the undistorted ThCr2Si2 type (I4/mmm; Z = 2). While the P atoms of the high temperature phase (HT-SrNi2P2: a = 3.948(1), c = 10.677(3) Å; 100°C) are isolated from each other (dp p: 3.12 Å) they most probably form pairs in the high pressure phase (HD-SrNi2P2: a = 4.003(1), c = 9.761(2) Å; ca. 4 kbar). This will be discussed on the basis of band structure calculations. BaNi2P2 (a = 3.947(1), c = 11.820(1) Å) also crystallizes in the ThCr2Si2 type structure, the P? P distance is extended to 3.71 Å.  相似文献   

6.
On LaCo2P2 and Other New Compounds with ThCr2Si2- and CaBe2Ge2-Type Structure The compounds MCo2P2 (M = La, Ce, Pr, Nd, Sm, Th, U), MFe2P2 (M = La, Ce, U), and ThCo2As2 were prepared for the first time. Structure determinations from single crystal X-ray data of LaCo2P2 (R = 0.011; 325 F-values), CeCo2P2 (R = 0.023; 160 F), PrCo2P2 (R = 0.044; 441 F), LaFe2P2 (R = 0.024; 511 F), and CeFe2P2 (R = 0.016; 183 F) with 11 variable parameters each resulted in atomic positions within the range of the ThCr2Si2-type. The powder patterns of ThCo2P2, and ThCo2As2 show superstructure reflections indicating a CaBe2Ge2-type structure. The other compounds can be assigned to the ThCr2Si2-type. Chemical bonding of these can be rationalized by a simple band structure model where bonding transition metal – transition metal interactions are important.  相似文献   

7.
New Ternary Compounds of Cesium and Elements of the 8th Transition Metal Group and the 5th Main Group In the ternary systems Cesium/element of the 8th transition metal group/element of the 5th main group some new compounds were found and investigated. Compounds of the formula Cs2MX2 (M = Pt, Pd, Ni; X = P, Sb, Bi) can be placed in a line with the K2PdP2-type structure. The new compound with the formula CsFe2Sb2 crystallizes in the ThCr2Si2-type structure. By single crystal measurements CsFe2As2 was found to crystallize in the space group I4/mmm with the lattice constants a = 389.43 pm and c = 1 509.97 pm.  相似文献   

8.
Synthesis and Crystal Structures of the Calcium Iridium Silicides Ca3Ir4Si4 and Ca2Ir2Si The new compounds Ca3Ir4Si4 und Ca2Ir2Si were prepared by reaction of the elemental components in sealed tantalum ampoules at 1200 °C. Their structures were determined from X‐ray single crystal data. Ca3Ir4Si4(cubic, space group I4¯3m, a = 7.4171(2)Å, Z = 2) crystallizes with the Na3Pt4Ge4 type structure. For Ca2Ir2Si (monoclinic, space group C2/c, a = 9.6567(5)Å, b = 5.8252(2)Å, c = 7.3019(4)Å, β = 100.212(2)°, Z = 4) a new structure was found. Chains of edge sharing, heavily distorted SiIr4‐tetrahedra (Ir‐Si: 2.381 and 2.414Å) are connected via short Ir—Ir‐contacts (2.640Å) to form an open Ir/Si‐framework accommodating a three‐dimensional arrangement of calcium atoms (Ca—Ca: 3.413 ‐ 3.948Å).  相似文献   

9.
On the Crystal Structure of Barium-Copper-Orthoarsenate BaCu2(AsO4)2 Single crystals of BaCu2(AsO4)2 were prepared above 1 000°C by CO2-LASER technique and investigated by X-ray structure determination. The light blue crystals show monoclinic symmetry, space group C? P21/n, a = 4.752; b = 8.506; c = 8.945 Å; β = 93.49°, Z = 2. BaCu2(AsO4)2 represents a hitherto unknown structure type with Cu2+ in trigonal bipyramidal coordination. Ba2+ shows an 8 + 2 surrounding by O2? and As5+ is tetrahedrally coordinated. The crystal structure is discussed with respect to related orthophosphates and vanadates.  相似文献   

10.
New Ternary Rhodium‐ and Iridium‐Phosphides and ‐Arsenides with U4Re7Si6 Type Structure Single crystals of Mg4Rh7P6 (a = 7.841(1) Å), Mg4Rh7As6 (a = 8.066(1) Å), Yb4Rh7As6 (a = 8.254(1) Å) and Mg4Ir7As6 (a = 8.082(2) Å) were prepared by heating mixtures of the elements in a lead flux and were investigated by means of X‐ray methods. The compounds are isotypic and they crystallize in the U4Re7Si6 type structure (Im 3 m; Z = 2), which is formed by CeMg2Si2 analogous units, which are twisted against each other. The Rh(Ir) atoms building these units are coordinated tetrahedrally by the non‐metal. The P(As) atoms of six units form a regular octahedron, which is centred by an additional Rh(Ir) atom. This second structural segment corresponds to the perovskit type structure.  相似文献   

11.
New Ternary Phosphides and Arsenides with a Metal : Non‐Metal Ratio in the Range of 2 : 1 Six new compounds were prepared by heating mixtures of the elements or by reaction of them in a tin(lead) flux. They were investigated by single crystal X‐ray methods. Sc2Ni12P7 (a = 9.013(1), c = 3.590(1) Å) crystallizes in the Zr2Fe12P7 type structure (P6; Z = 1), which is basically built up likewise by Eu2Pd12As7 (a = 10.040(1), c = 4.100(1) Å) and Sr2Rh12P7 (a = 9.626(1), c = 3.844(1) Å), but one of seven non‐metal atoms has a somewhat modified environment and is disordered along [001]. Therefore their crystal structure corresponds to the Ho2Rh12As7 type structure (P63/m; Z = 1). Ca2Ni7P4 (a = 3.703(1), b = 9.209(1), c = 10.378(1) Å) forms the Nd2Ni7P4 type structure (Pmn21; Z = 2), whereas the atomic arrangements of Ca4Rh13As9 (a = 3.903(2), b = 11.221(1), c = 19.411(4) Å) and Sm4Rh13As9 (a = 3.913(2), b = 11.242(6), c = 19.440(6) Å) correspond basically to the Ho4Ir13Ge9 type structure (Pmmn; Z = 2), but the disorder of Rh8 required the occupation of splitting positions. The transition metals have three, four or five neighbouring atoms of phosphorus or arsenic and form together with them three‐dimensional covalent frameworks, of which holes are occupied by the atoms of the electropositive metal. Most of the polyhedra around the P and As atoms respectively consist of trigonal prisms of metal atoms with additional metal atoms capping the rectangular faces of the prisms. This environment ist characteristic for ternary phosphides and arsenides with a metal : non‐metal ratio in the range of 2 : 1.  相似文献   

12.
About the Effect of Temperature, Pressure, and Substitution on the Crystal Structure of ARh2P2 (A = Ca, Sr, Eu, Ba) Four compounds ARh2P2 (A = Ca, Sr, Eu, Ba) were prepared by heating mixtures of the elements and investigated by means of single crystal X-ray methods. They crystallize in the ThCr2Si2 type structure (I4/mmm; Z = 2) with P? P distances along [001] reaching from 2.26 Å (CaRh2P2) to 3.74 Å (BaRh2P2). With increasing temperature (EuRh2P2) or increasing pressure (SrRh2P2) a first order phase transition occurs with strong changes of the P? P distances. Substitution of the atoms changes the bond lengths of the compounds too.  相似文献   

13.
Synthesis and Crystal Structure of Sr2Rh7P6 Single crystals of Sr2Rh7P6 were obtained by reaction of the elements in molten lead at 1100 °C and investigated by X-ray methods. The compound crystallizes tetragonally (a = 11.080(2), c = 4.098(1) Å) and forms a crystal structure (P 4 21m; Z = 2) with ThCr2Si2 analogous units, which are linked with each other in a new way. Therefore the RhP4 tetrahedra form bands of edge sharing chains parallel to [001] anstead of layers as in the ThCr2Si2 type structure. The arrangement enables a part of the P atoms to form short P–P distances of 2,26 Å and space for additional Rh atoms with a likewise distorted tetrahedral coordination of P atoms is obtained.  相似文献   

14.
Preparation and Crystal Structure of New AM2X2 Compounds in the Systems Earthalkali Metal/Platinum Metal/Germanium . Four new ternary compounds in the systems earthalkali metal/platinum metal/germanium have been prepared and characterised by single crystal X-ray investigation. BaRu2Ge2 crystallizes orthorhombically, space group Fddd, a=634.4(1) pm, b=1 056.5(3) pm, c=1 273,1(3) pm. SrRu2Ge2 (a=430.6(1) pm, c=1 030.3(2) pm), BaRh2Ge2 (a=418.9(5) pm, c=1 175.7(10) pm) and SrRh2Ge2 (a=418.3(3) pm, c=1 071.8(6) pm) crystallize in the ThCr2Si2-type structure (tetragonal, space group I4/mmm).  相似文献   

15.
Crystal and Electronic Structures of AIr2P2 (A: Ca — Ba) Single crystals of CaIr2P2 (a = 6.610(3), c = 7.031(3)Å) were prepared by reaction of the elements in a lead flux and investigated by X‐ray methods. The compound crystallizes with the EuIr2P2 type (P3221; Z = 3) just detected in the case of SrIr2P2. In the structure all the P atoms and half of the Ir atoms build a three‐dimensional framework with Ca and the remaining Ir atoms in the cavities. The latter atoms form threefold screws along [001] with relatively short Ir‐Ir distances and they are connected with the framework by Ir‐P bonds. LMTO band structure calculations suggested that the compounds with Ca, Sr, and Eu should be semiconductors. For EuIr2P2 this was confirmed by conductivity measurements. BaIr2P2 (a = 3.946(1), c = 12.572(2)Å) synthesized by heating the elements at 1050 °C for a long time crystallizes with the ThCr2Si2 type structure (I4/mmm; Z = 2). Due to the rigid layers of IrP4 tetrahedra and the atomic size of barium the P‐P distance between the layers with a value of 3.71Å is very long.  相似文献   

16.
Ternary Phosphides and Arsenides of Nickel with a Metal: Non-Metal Ratio of 2:1 Several new ternary phosphides and arsenides of nickel were prepared by reaction of the elements. SrNi5P3, SrNi5As3, and EuNi5As3 crystallize in the LaCo5P3 structure with the following lattice constants [Å]: BaNi9P5 (a = 6.534(1) Å, c = 10.847(2) Å) and BaNi9As5 (a = 6.760(1) Å, c = 11.226(2) Å) crystallize in a new type of structure (P63/mmc, Z = 2). The characteristic polyhedra are trigonal Ni-antiprisms centered by P or As atoms and trigonal Ni-prisms with vacant centres and sides capped by non-metal atoms. U2Ni12P7 (a = 9.077(2) Å, c = 3.694(1) Å) has a Zr2Fe12P7 structure (P6 , Z = 1).  相似文献   

17.
The isostructural compounds Yb2MgSi2, La2.05Mg0.95Si2, and Ce2.05Mg0.95Si2, as well as Yb2Li0.5Ge2 and Yb1.75Mg0.75Si2, respectively, were synthesized from stoichiometric mixtures of the corresponding elements in sealed Nb‐ ampoules under argon atmosphere. The structures were determined by single crystal X‐ray diffraction: Yb2MgSi2 (P4/mbm (No. 127), a = 7.056(1), c = 4.130(1) Å3, Z = 2), La2.05Mg0.95Si2 (P4/mbm, a = 7.544(1), c = 4.464(1) Å3, Z = 2), and Ce2.05Mg0.95Si2 (P4/mbm, a = 7.425(1), c = 4.370(1) Å3, Z = 2), Yb2Li0.5Ge2 (Pnma (No. 62), a = 7.0601(6), b = 14.628(1), c = 7.6160(7) Å, V = 786.5Å3, Z = 4), Yb1.75Mg0.75Si2 (Pnma, a = 6.9796(1), b = 14.4009(1), c = 7.5357(1) Å, V = 757.43(2) Å3, Z = 4). All compounds contain exclusively Tt‐Tt dumb‐bells (Tt = Si, Ge). The Si‐Si Zintl anions exhibit only very small variations of bond lengths which seem to be more due to cation matrix effects than to effective bond orders.  相似文献   

18.
On the Low Temperature Modifications of Ag6Si2O7 and Ag6Ge2O7 – Synthesis, Crystal Structure, and Comparison of Ag? Ag Distances For the first time, single crystals of Ag6Si2O7 and Ag6Ge2O7 have been obtained by solid state reactions of the binary oxides at temperatures of 350°C while applying oxygen pressures of 700 bar. According to the results of X-ray crystal structure determinations both compounds crystallize isostructural in P21 (Ag6Si2O7: a = 5.3043(5) Å, b = 9.7533(7) Å, c = 15.9283(13) Å, β = 91.165(8)°, 3881 independent reflections, R1 = 3.3%, wR2 = 7.2%; Ag6Ge2O7: a = 5.3713(4) Å, b = 9.9835(8) Å, c = 16.2249(14) Å, β = 90.904(8)°, 2111 independent reflections, R1 = 4.3%, wR2 = 6.0%, Z = 4). The crystal structures contain two independent M2O76? anions, one in a staggered, and the other in an ecliptic conformation. The cationic partial structure may be described as a distorted bcc arrangement of Ag+ and M4+. Comparison of the structures with respect to the Ag? Ag separations reveals the latter to be probably due to intrinsic d10–d10 bonding interactions as far as the range of 2.89 Å to 3.25 Å is considered.  相似文献   

19.
New Polyanions in Zintl Phases. On Ca3Si2As4, Ca3Ge2As4, Sr3Si2As4, and Sr3Ge2As4 The new compounds Ca3Si2As4, Ca3Ge2As4, Sr3Si2As4 and Sr3Ge2As4 crystallize in the monoclinic system with lattice constants see “Inhaltsübersicht”. There are two new structure types. Both contain Si2As6 or Ge2As6 groups connected to chains in different ways. These chains are ordered parallel to each other to sheets with the alkaline-earth atoms between them.  相似文献   

20.
Synthesis and Crystal Structure of A Cu4As2 ( A : Ca–Ba, Eu) Steel‐gray single crystals of ACu4As2 with A = Ca–Ba and Eu respectively were synthesized by heating mixtures of the elements at about 900 °C. Structure determinations with X‐ray diffractometry data revealed, that the isotypic compounds crystallize in the rhombohedral CaCu4P2 type structure (R3m; Z = 3) (hexagonal axes see ”︁Inhaltsübersicht”︁”︁). Measurements of the susceptibility of EuCu4As2 showed divalent Eu and ferromagnetic order at 35 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号