首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A way to mix polymer blends of very high and low molecular weights by using a mixing nozzle is presented. An array of blend nozzles with a conical inlet attached to a single screw extruder was used to blend polyethylene homopolymers with very different molecular weights. Using extruders with 30 and 50 mm barrel diameters, the effects of nozzle dimensions and operation conditions with respect to the homogeneity were studied. The device proved useful in obtaining a good macroscopic and molecular homogeneity up to 30 kg/hr by the 50 mm extruder, though care must be taken to avoid the degradation of polymers by heat and shear, especially in the extruder. The key factor ruling the efficiency of blending was found to be the compression ratio, i.e. the ratio of the cross sectional areas of the entrance of the nozzle and that of the orifice, and the shear rate at the orifice. For the nozzle with geometrically similar figure, the critical shear rate at which the homogeneity began to worsen was the same. Scale-up of the nozzle could be accomplished by enlarging the diameter of the diameter of the orifice, yet maintaining a geometrically similar figure. The maximum output of the nozzle is proportional to the third power of the orifice diameter.  相似文献   

2.
The nature and extent of phase mixing in blends of hydroxyl-functionalized polystyrene and poly(ethyl acrylate) (PS/PEA), where the driving force for mixing is hydrogen bonding, are characterized by several techniques. Small-angle x-ray scattering (SAXS) shows a reduction in average domain size with increasing functionalization level, a result also evident from scanning electron microscopy (SEM). Together, the two techniques reveal a very broad distribution of domain sizes. At high functionalization levels, both SAXS and SEM indicate a high degree of “in-domain” mixing, with little or no pure PS or PEA remaining in the blends. Mathematical modeling of dynamic mechanical thermal analysis (DMTA) data is employed to quantify this progression. Initially, mixing is primarily interfacial, but as the functionalization level increases, the mixed interphase rapidly grows to occupy the entire material. In agreement with the SAXS and SEM results, DMTA modeling shows that further increases in the functionalization level suppress the amplitude of composition variations in the sample. The onset of extensive in-domain mixing coincides with the marked changes in stress-strain behavior observed previously in these materials. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Knowledge of the heat of mixing is very important in order to evaluate the interaction parameter, according to the Patterson theory. In this work we illustrate the results regarding some polymer blends, based on poly(vinyl acetate) and some polyacrylates with different substituent groups. In this way it is possible to understand the effect of the lateral group hindrance, as it will be illustrated in the paper.  相似文献   

4.
Latex immunoagglutination assay in a microfluidic device is expected to be even easier than its large-sized, commercialized counterpart. However, such demonstration has had a limited success due to the difficulties in mixing in a microfluidic device, especially for the microparticles used in latex immunoagglutination assay. The primary goal of this work is to improve diffusional mixing towards the successful latex immunoagglutination in a microfluidic devices without any non-specific binding. To this end, SDS (sodium dodecyl sulfate, an ionic surfactant) or Tween 80 (polyethylene sorbitol ester, a non-ionic surfactant) was added to the antibody-conjugated polystyrene (PS) microparticle suspension. These surfactant-added particle suspensions were mixed with the target antigen solution at the Y-junction of a microfluidic device. The immunoagglutination and the diffusion behavior were visually identified with an inverted light microscope. Both surfactants showed some problems such as non-specific binding (with SDS) or very poor diffusion (with Tween 80). As an alternative approach, therefore, highly carboxylated PS microparticles, where the surface is saturated with carboxyl-terminated side chains, were evaluated without using any surfactants. These particles showed very low non-specific binding comparable to that with Tween 80 and good diffusional mixing equivalent to that with SDS.  相似文献   

5.
Interfacial agents used in the compatibilization of immiscible polymer blends often consist of block copolymers containing at least one segment compatible with each of the two phases of the blend. This work examines the influence of the molecular weight, architecture, and chemical composition of the interfacial agent on its ability to emulsify a polymer blend. The system chosen is a blend containing 80% polystyrene and 20% ethylene-propylene rubber, compatibilized by diblock copolymers of poly(styrene-hydrogenated butadiene). The emulsification curve, which relates the dispersed phase particle size to the concentration of interfacial agent added to the system, was used as a tool to characterize the efficacy of the different interfacial agents. The observed behavior is similar to that of classical emulsions: a rapid drop in phase size at low concentrations of interfacial modifier, followed by a levelling off to an equilibrium diameter value once a “critical” concentration has been reached. For systems compatibilized by symmetrical diblocks (i.e., containing approximately 50% styrene by weight), the volume average particle diameter decreased from 2.7 μm for the unmodified system to about 0.4 μm once interfacial saturation is reached. The critical concentration for emulsification decreased with increasing interfacial agent molecular weight, due to the higher interfacial area occupied by longer molecules; however, this parameter did not affect the equilibrium particle diameter. The asymmetrical diblock copolymer (30% styrene) was found to be less effective than the symmetrical ones over the entire range of concentrations studied (5 to 35% modifier, based on the volume of the minor phase). Asymmetrical diblock copolymers would tend to form micelles, whereas symmetrical copolymers are less constrained at the interface. No significant difference was observed between the emulsifying capability of tapered and pure diblocks of similar composition and molecular weight. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Pair interaction parameters for multicomponent polymer blends were found to be determined by analyzing the sorption isotherms of common solvent.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2494–2496, November, 2004.  相似文献   

7.
The effect of polymer-polymer interactions on the miscibility and macroscopic properties of PVC/PMMA, PVC/PS and PMMA/PS blends were studied in the entire composition range. The miscibility of the components was characterized by the Flory-Huggins interaction parameter or by quantities related to it. Thermal analysis, light transmittance measurements, and scanning electron microscopy were carried out on the blends and their mechanical properties were characterized by tensile tests. Interactions were analyzed by infrared spectroscopy and contact angle measurements. All three polymer pairs form heterogeneous blends, but the strength of molecular interactions is different in them, the highest is in PVC/PMMA system resulting in partial miscibility of the components and beneficial mechanical properties. The structure of these blends depends strongly on composition. A phase inversion can be observed between 0.5 and 0.6 PMMA content accompanied with a significant change in structure and properties. The PVC/PS and the PMMA/PS pairs are immiscible, though the results indicate the partial solubility of the components. The analysis of the surface characteristics of the components and the comparison of quantities derived from them with miscibility as well as with the macroscopic properties of blends revealed that blend properties cannot be predicted in this way, since they are affected by several factors.  相似文献   

8.
Suzuki's scaling theory for transient phenomena is applied to the calculation of the kinetics of phase separation in the early-to-intermediate stage based on a nonlinear theory proposed by Langer, Bar-on, and Miller (LBM). Calculated results are compared with experimental data on light scattering from a polymer blend system. Deviations from predictions of Cahn's linearized theory in the early time range of phase separation can be explained well by the proposed method of calculation. Nonlinear effects are found to play an essential role in characterizing the light scattering behavior of phase separation in the intermediate stage. Time evolutions of the single-point distribution function of composition are calculated, and the results are in good agreement with those reported in digital imaging analysis experiments and computer simulations of the time-dependent Ginzburg-Landau equation. The influence of asymmetry of free-energy on the single-point distribution function is also investigated in this study. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The selection of a polymer matrix for a conductive blend with polyaniline and para-toluene sulfonic acid (PANI-pTSA) was performed using molecular simulation techniques, both a fast quantitative structure–properties relationship method as a first screening phase followed by atomistic simulation. Using the atomistic simulation method, the solubility parameters and the heat of mixing of each blend were calculated to enable the determination of compatible matrices in blends with PANI-pTSA, which was validated by experimental scanning electron microscopy fractographs. Based on such calculations, polycaprolactone (PCL)/PANI-pTSA phase diagrams were estimated, showing slight miscibility of polydispersed PANI in PCL, particularly the short chains fraction, at the elevated melt processing temperature. It was suggested that this partial miscibility at the elevated temperature might lead to a conductive network morphology of PANI in PCL at room temperature, because of phase separation and precipitation of soluble PANI molecules, upon cooling and solidification of the melt. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Blending conjugated polymers is an efficient method to improve the properties of the films. The phase diagram of poly(9,9‐dihexylfluorene) (PF) and poly(2‐methoxy‐5‐(2′‐ethyl‐hexyloxyl)‐p‐phenylene vinylene) (MEHPPV) was predicted by a modified Flory–Huggins theory based on the topological method (graph theory) for the structure‐property correlations. It shows that the two polymers have a strong trend to separate. Atomic/friction force microscopy (AFM/FFM) measurements show there exist microphase separations in film prepared at room temperature. After annealing at 160 °C, serious phase segregations took place in both the lateral and vertical direction. The photoluminescence of the thin films was also measured by a fluorophotometer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1382–1391, 2005  相似文献   

11.
The early stage of the morphology development has been studied for the blending of two immiscible polymers. Controlled experiments were carried out in a batch mixer in such a way that the rate of melting was low enough to follow up the morphology development of dilute and concentrated systems. For a dilute or semidilute polypropylene and polyamide 6 (PP/PA6) blend with 0.5, 5, or 10 wt % PA6, particles formed in the very early stage of melt blending were very small, of the order of 0.25 to 0.3 μm in radius. They immediately began to grow in size when no compatibilizer was added, indicative of coalescence even in the very early stage of melt blending and/or in very dilute systems (0.5 wt % PA6). Further growth of the particles was eliminated with the introduction of a graft copolymer compatibilizer providing evidence of the stabilizing effect of the copolymer from the very beginning of melting blending. However, the behavior of the morphology development of a concentrated PP/PA6 (80/20) system was similar to that reported in the literature. The average radius of the particles of the uncompatibilized blend decreased with increasing mixing time, whereas that of the compatibilized blend remained almost constant during mixing. The most favorable conditions to obtain a fine morphology seems to be the following: rate of melting/plastification of pellets < rate of dispersion (deformation + breakup) of the polymer melt to small particles < rate of stabilization (with an adequate copolymer). © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 601–610, 2001  相似文献   

12.
The morphology and the crystallization behavior of blends of linear low density polyethylene (LLDPE) with an experimental sample of a semiflexible liquid crystalline polymer (SBH 112 by Eniricerche, Italy) have been studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The blends possess a two-phase morphology, due to immiscibility of the two components. SEM observations show that dispersion of the minor SBH phase is favored at low (相似文献   

13.
14.
Physically mixed powderous polymer blends consisting of at least two different thermoplastic materials with complementary properties could allow the successful fabrication of components with tailored and graded properties. In this work, powderous polymer blends of the partially miscible and chemically reactive blend system PBT/PC were produced from wet grinded powders at different weight ratios of 90/10, 80/20, 70/30 and 60/40, respectively. The PBT/PC is used as a model system for a blend with a semi-crystalline and amorphous component, while being relevant for industrial use, such as automotive applications. Before the implementation into the selective laser sintering process (SLS), the bulk properties of the powders were analyzed. The quadratic monolayer test specimens were generated with different energy densities by variating the laser power. The specimens' geometrical and microstructural properties were studied. The investigations showed that an improvement of geometric properties in terms of layer development can be achieved by increasing the PC content and that it is possible to generate polymer blends with matrix and dispersed phase from PBT/PC blends.  相似文献   

15.
The miscibility and thermal properties of polyethylene oxide(PEO)/oligoester resin (OER) blends and PEO/crosslinked polyester (PER) blends were studied by differential scanning calorimetry (DSC). The effect of quenching process on the crystallization behavior of PEO for these two systems were investigated and discussed in details. It has been found that a single, composition dependent glass transition temperature (Tg) was observed for all the blends, indicating that the two systems are miscible in the amorphous state at overall compositions. From the melting point depression of PEO, the interaction parameter χ12 for PEO/OER blends and that for PEO/PER blends were found to be −1.29 and −2.01, respectively. The negative values of χ12 confirmed that both PEO/OER blends and PEO/PER blends are miscible in the molten state. Quenching process has a greater hindrance on the crystallization of PEO/OER blends than on that of PEO/PER blends. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3161–3168, 1997  相似文献   

16.
Compatibilization of blends of linear low-density polyethylene (LLDPE) and polystyrene (PS) with block copolymers of styrene (S) and butadiene (B) or hydrogenated butadiene (EB) has been studied. The morphology of the LLDPE/PS (50/50) composition typically with 5% copolymer was characterized primarily by scanning electron microscopy (SEM). The SEB and SEBS copolymers were effective in reducing the PS domain size, while the SB and SBS copolymers were less effective. The noncrystalline copolymers lowered the tensile modulus of the blend by as much as 50%. Modulus calculations based on a coreshell model, with the rubbery copolymer coating the PS particle, predicted that 50% of the rubbery SEBS copolymer was located at the interface compared to only 5–15% of the SB and SBS copolymers. The modulus of blends compatibilized with crystalline, nonrubbery SEB and SEBS copolymers approached Hashin's upper modulus bound. An interconnected interface model was proposed in which the blocks selectively penetrated the LLDPE and PS phases to provide good adhesion and improved stress and strain transfer between the phases. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Longitudinal relaxation of proton magnetisation was used to characterize the molecular motions of PEO chains in compatible PEO (hydrogenated)/PMMA (deuterated) blends. Both the temperature and the PEO concentration, Φ, were varied. A maximum in the spin–lattice relaxation rate was observed and its properties were analyzed as a function of Φ. For Φ ≤ 0.50, the maximum is observed below the glass transition temperature of the blend; this shows that PEO chains dispersed in a matrix of PMMA remain highly mobile on a local scale even below Tg(Φ). A frequency–temperature correspondence procedure, applied to the measurements performed at two Larmor frequencies, 32 and 60 MHz, leads to a characteristic correlation time for PEO molecular motions. Its temperature dependence obeys a WLF free volume relation above the glass transition of the blends. The PEO free volume fraction and its thermal expansion are strongly reduced by the presence of the PMMA chains. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1095–1105, 1997  相似文献   

18.
This article reports on a new phenomenon: The presence of a compatibilizer accelerates the melting/plastification of an immiscible polymer blend during melt blending. The increase in the rate of melting as a result of the addition of a compatibilizer is believed to be one of the important factors responsible for the fact that the morphology of compatibilized blends develops much faster than that of their uncompatibilized counterparts. To substantiate the above statement, blends based on polypropylene (PP) and polyamide 6 (PA6) were used as model systems. The compatibilizer was a graft copolymer (PP-g-PA6) with PP as the backbone and PA6 as grafts. Its presence in a PP/PA6 blend accelerated the rate of melting of the PA6. This effect was observed only when the compatibilizer itself was molten and migrated to the interfacial layer between the PA6 and PP phases. It is likely that the presence of the compatibilizer increased the chain entanglements at the PP and PA6 interface and consequently reduced the thermal resistance of the interfacial layer. Detailed mechanisms are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3368–3384, 1999  相似文献   

19.
Viscoelastic properties of model immiscible blend were studied here under steady state condition at different initial conditions and transient flow conditions. The flow‐induced microstructure has been studied on these model blends. For this system, the elastic properties of the blend are mainly governed by the interface. Measurement of the dynamic modulus and of the first normal stress difference, both reflecting this enhanced elasticity, have been used to prove the blend morphology. The dynamic moduli after cessation of shear flow, the mean diameter of the disperse phase as generated by the shear flow, have been calculated using the model of Palierne. A procedure based on a direct fitting of the dynamic moduli with the model is compared with the one that uses a weight relaxation spectrum. On the other hand, the steady state normal stress data have been related to the morphology of the blend by means of Doi and Ohta model. The specific interfacial area is found to be inversely proportional to the ratio of interfacial tension over shear stress for the blend. The flow behavior during transient shear flow was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3519–3533, 2005  相似文献   

20.
A novel and highly selective optical sensor with molecularly imprinted polymer (MIP) film was fabricated and investigated. The optical sensor head employing a medium finesse molecularly imprinted polymer film has been fabricated and characterised. A blank polymer and formaldehyde imprinted polymer were using methacrylic acid as the functional monomer and the ethylene glycol dimethacrylate as a crosslinker. The transduction mechanism is discussed based on the changes of optical intensity of molecularly imprinted polymer film acting as an optical reflected sensor. Template molecules, which diffused into MIP, could cause film density, and refractive index change, and then induce measurable optical reflective intensity shifts. Based on the reflective intensity shifts, an optical reflection detection of formaldehyde was achieved by illuminating MIP with a laser beam. For the same MIP, the reflective intensity shift was proportional to the amount of template molecule. This optical sensor, based on an artificial recognition system, demonstrates long-time stability and resistance to harsh chemical environments. As the research moves forward gradually, we establish the possibilities of quantitative analysis primly, setting the groundwork to the synthesis of the molecular imprinted optical fiber sensor. The techniques show good reproducibility and sensitivity and will be of significant interest to the MIPcommunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号