首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let H be a random graph on n vertices, grown by adding vertices one at a time, joining each new vertex to a uniformly chosen set of m earlier vertices. If edges of H are deleted independently, each being retained with probability p, then there is a “phase transition”. There is a certain critical value pc of p such that, with high probability, a component of order Θ(n) remains as n → ∞ if and only if p > pc. Among other results, we obtain the exact value of pc, which depends on m in a nontrivial way, and show that the phase transition has “infinite order”; in fact, for p = pc + ?, the largest component has order exp(?Θ(1/ ))n with high probability. Analogous results were proved recently in by Bollobás, Janson, and Riordan [Random Structures Algorithms 26 (2005), 1–36] for a related model in which edges are present independently. The model we study is considerably more difficult to analyze, since the dependence between the edges is very important, affecting the value of pc, so many new complications arise. In overcoming these complications we make use of the techniques developed by the authors [Internet Math 1 (2003), 1–35] to analyze a very different model. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005  相似文献   

2.
A set S of vertices is a determining set for a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G, denoted Det(G), is the size of a smallest determining set. This paper begins by proving that if G=G□?□G is the prime factor decomposition of a connected graph then Det(G)=max{Det(G)}. It then provides upper and lower bounds for the determining number of a Cartesian power of a prime connected graph. Further, this paper shows that Det(Qn)=?log2n?+1 which matches the lower bound, and that Det(K)=?log3(2n+1)?+1 which for all n is within one of the upper bound. The paper concludes by proving that if H is prime and connected, Det(Hn)=Θ(logn). © 2009 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
In this paper, we consider hashing with linear probing for a hashing table with m places, n items (n < m), and ? = m ? n empty places. For a noncomputer science‐minded reader, we shall use the metaphore of n cars parking on m places: each car ci chooses a place pi at random, and if pi is occupied, ci tries successively pi + 1, pi + 2, until it finds an empty place. Pittel [42] proves that when ?/m goes to some positive limit β < 1, the size B of the largest block of consecutive cars satisfies 2(β ? 1 ? log β)B = 2 log m ? 3 log log m + Ξm, where Ξm converges weakly to an extreme‐value distribution. In this paper we examine at which level for n a phase transition occurs between B = o(m) and m ? B = o(m). The intermediate case reveals an interesting behavior of sizes of blocks, related to the standard additive coalescent in the same way as the sizes of connected components of the random graph are related to the multiplicative coalescent. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 76–119, 2002  相似文献   

4.
A family of permutations ℱ ⊆ Sn with a probability distribution on it is called k-restricted min-wise independent if we have Pr[min π(X) = π(x)] = 1/|X| for every subset X ⊆ [n] with |X| ≤ k, every x ∈ X, and π ∈ ℱ chosen at random. We present a simple proof of a result of Norin: every such family has size at least Some features of our method might be of independent interest. The best available upper bound for the size of such family is 1 + ∑ (j − 1)(). We show that this bound is tight if the goal is to imitate not the uniform distribution on Sn, but a distribution given by assigning suitable priorities to the elements of [n] (the stationary distribution of the Tsetlin library, or self-organizing lists). This is analogous to a result of Karloff and Mansour for k-wise independent random variables. We also investigate the cases where the min-wise independence condition is required only for sets X of size exactly k (where we have only an Ω(log log n + k) lower bound), or for sets of size k and k − 1 (where we already obtain a lower bound of n − k + 2). © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2003  相似文献   

5.
We study here the spectra of random lifts of graphs. Let G be a finite connected graph, and let the infinite tree T be its universal cover space. If λ1 and ρ are the spectral radii of G and T respectively, then, as shown by Friedman (Graphs Duke Math J 118 (2003), 19–35), in almost every n‐lift H of G, all “new” eigenvalues of H are ≤ O(λ ρ1/2). Here we improve this bound to O(λ ρ2/3). It is conjectured in (Friedman, Graphs Duke Math J 118 (2003) 19–35) that the statement holds with the bound ρ + o(1) which, if true, is tight by (Greenberg, PhD thesis, 1995). For G a bouquet with d/2 loops, our arguments yield a simple proof that almost every d‐regular graph has second eigenvalue O(d2/3). For the bouquet, Friedman (2008). has famously proved the (nearly?) optimal bound of . Central to our work is a new analysis of formal words. Let w be a formal word in letters g,…,g. The word map associated with w maps the permutations σ1,…,σkSn to the permutation obtained by replacing for each i, every occurrence of gi in w by σi. We investigate the random variable X that counts the fixed points in this permutation when the σi are selected uniformly at random. The analysis of the expectation ??(X) suggests a categorization of formal words which considerably extends the dichotomy of primitive vs. imprimitive words. A major ingredient of a our work is a second categorization of formal words with the same property. We establish some results and make a few conjectures about the relation between the two categorizations. These conjectures suggest a possible approach to (a slightly weaker version of) Friedman's conjecture. As an aside, we obtain a new conceptual and relatively simple proof of a theorem of A. Nica (Nica, Random Struct Algorithms 5 (1994), 703–730), which determines, for every fixed w, the limit distribution (as n →∞) of X. A surprising aspect of this theorem is that the answer depends only on the largest integer d so that w = ud for some word u. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

6.
This paper is the continuation of [17]. We investigate mapping and spectral properties of pseudodifferential operators of type Ψ with χ χ ? ? and 0 ≤ γ ≤ 1 in the weighted function spaces B (?n, w(x)) and F (?n, w(x)) treated in [17]. Furthermore, we study the distribution of eigenvalues and the behaviour of corresponding root spaces for degenerate pseudodifferential operators preferably of type b2(x) b(x, D) b1(x), where b1(x) and b2(x) are appropriate functions and b(x, D) ? Ψ. Finally, on the basis of the Birman-Schwinger principle, we deal with the “negative spectrum” (bound states) of related symmetric operators in L2.  相似文献   

7.
The random assignment problem is to choose a minimum‐cost perfect matching in a complete n×n bipartite graph, whose edge weights are chosen randomly from some distribution such as the exponential distribution with mean 1. In this case it is known that the expectation does not grow unboundedly with n, but approaches some limiting value c* between 1.51 and 2. The limit is conjectured to be π2/6, while a recent conjecture is that for finite n, the expected cost is ∑ 1/i2. This paper contains two principal results. First, by defining and analyzing a constructive algorithm, we show that the limiting expectation is c*<1.94. Second, we extend the finite‐n conjecture to partial assignments on complete m×n bipartite graphs and prove it in some limited cases. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 113–144, 1999  相似文献   

8.
We consider a canonical Ramsey type problem. An edge‐coloring of a graph is called m‐good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f(m, G) denote the smallest n such that every m‐good edge‐coloring of Kn yields a properly edge‐colored copy of G, and let g(m, G) denote the smallest n such that every m‐good edge‐coloring of Kn yields a rainbow copy of G. We give bounds on f(m, G) and g(m, G). For complete graphs G = Kt, we have c1mt2/ln t ≤ f(m, Kt) ≤ c2mt2, and cmt3/ln t ≤ g(m, Kt) ≤ cmt3/ln t, where c1, c2, c, c are absolute constants. We also give bounds on f(m, G) and g(m, G) for general graphs G in terms of degrees in G. In particular, we show that for fixed m and d, and all sufficiently large n compared to m and d, f(m, G) = n for all graphs G with n vertices and maximum degree at most d. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2003  相似文献   

9.
By using the LITTLEWOOD matrices A2n we generalize CLARKSON' S inequalities, or equivalently, we determine the norms ‖A2n: l(LP) → l(LP)‖ completely. The result is compared with the norms ‖A2n: ll‖, which are calculated implicitly in PIETSCH [6].  相似文献   

10.
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals χ(G) + 1. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G. The main result is that χc(μ(G)) = χ(μ(G)), which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As χc(G) = and χ(G) = , consequently, there exist graphs G such that χc(G) is as close to χ(G) − 1 as you want, but χc(μ(G)) = χ(μ(G)). © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999  相似文献   

11.
When the number of players, v, in a whist tournament, Wh(v), is ≡ 1 (mod 4) the only instances of a Z-cyclic triplewhist tournament, TWh(v), that appear in the literature are for v = 21,29,37. In this study we present Z-cyclic TWh(v) for all vT = {v = 8u + 5: v is prime, 3 ≤ u ≤ 249}. Additionally, we establish (1) for all vT there exists a Z-cyclic TWh(vn) for all n ≥ 1, and (2) if viT, i = 1,…,n, there exists a Z-cyclic TWh(v… v) for all ?i ≥ 1. It is believed that these are the first instances of infinite classes of Z-cyclic TWh(v), v ≡ 1 (mod 4). © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)$. We improve the previously best known lower and upper bounds of 0.25682 and 3/10?ε, respectively, by showing that This implies the following new upper bound for the Turán density of K In order to establish these results we use a combination of the properties of computer‐generated extremal 3‐graphs for small n and an argument based on “super‐saturation”. Our computer results determine the exact values of ex(n, K) for n≤19 and ex2(n, K) for n≤17, as well as the sets of extremal 3‐graphs for those n. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 105–114, 2010  相似文献   

13.
It is known that the joint distribution of the number of nodes of each type of an m‐ary search tree is asymptotically multivariate normal when m ≤ 26. When m ≥ 27, we show the following strong asymptotics of the random vector Xn = t(X, … , X), where X denotes the number of nodes containing i ? 1 keys after having introduced n ? 1 keys in the tree: There exist (nonrandom) vectors X, C, and S and random variables ρ and φ such that (Xn ? nX)/n ? ρ(C cos(τ2log n + φ) + S sin(τ2log n + φ)) →n→∞ 0 almost surely and in L2; σ2 and τ2 denote the real and imaginary parts of one of the eigenvalues of the transition matrix, having the second greatest real part. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2004  相似文献   

14.
Pick n points independently at random in ?2, according to a prescribed probability measure μ, and let Δ ≤ Δ ≤ … be the areas of the () triangles thus formed, in nondecreasing order. If μ is absolutely continuous with respect to Lebesgue measure, then, under weak conditions, the set {n3Δ : i ≥ 1} converges as n → ∞ to a Poisson process with a constant intensity κ(μ). This result, and related conclusions, are proved using standard arguments of Poisson approximation, and may be extended to functionals more general than the area of a triangle. It is proved in addition that if μ is the uniform probability measure on the region S, then κ(μ) ≤ 2/|S|, where |S| denotes the area of S. Equality holds in that κ(μ) = 2/|S| if S is convex, and essentially only then. This work generalizes and extends considerably the conclusions of a recent paper of Jiang, Li, and Vitányi. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 206–223, 2003  相似文献   

15.
We consider a domain Ω in ?n of the form Ω = ?l × Ω′ with bounded Ω′ ? ?n?l. In Ω we study the Dirichlet initial and boundary value problem for the equation ? u + [(? ? ?… ? ?)m + (? ? ?… ? ?)m]u = fe?iωt. We show that resonances can occur if 2ml. In particular, the amplitude of u may increase like tα (α rational, 0<α<1) or like in t as t∞∞. Furthermore, we prove that the limiting amplitude principle holds in the remaining cases.  相似文献   

16.
In this paper we establish necessary and sufficient conditions for decomposing the complete multigraph λKn into cycles of length λ, and the λ‐fold complete symmetric digraph λK into directed cycles of length λ. As a corollary to these results we obtain necessary and sufficient conditions for decomposing λKn (respectively, λK) into cycles (respectively, directed cycles) of prime length. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 85–93, 2010  相似文献   

17.
Let (Xn) be a sequence of infinite-dimensional BANACH spaces. We prove that has a non-locally complete quotient if X1 is not quasi-reflexive.  相似文献   

18.
We study the maximal function Mf(x) = sup |f(x + y, t)| when Ω is a region in the (y,t) Ω upper half space R and f(x, t) is the harmonic extension to R+N+1 of a distribution in the Besov space Bαp,q(RN) or in the Triebel-Lizorkin space Fαp,q(RN). In particular, we prove that when Ω= {|y|N/ (N-αp) < t < 1} the operator M is bounded from F (RN) into Lp (RN). The admissible regions for the spaces B (RN) with p < q are more complicated.  相似文献   

19.
We consider a second‐order differential operator A( x )=??iaij( x )?j+ ?j(bj( x )·)+c( x ) on ?d, on a bounded domain D with Dirichlet boundary conditions on ?D, under mild assumptions on the coefficients of the diffusion tensor aij. The object is to construct monotone numerical schemes to approximate the solution of the problem A( x )u( x )=µ( x ), x ∈D, where µ is a positive Radon measure. We start by briefly mentioning questions of existence and uniqueness introducing function spaces needed to prove convergence results. Then, we define non‐standard stencils on grid‐knots that lead to extended discretization schemes by matrices possessing compartmental structure. We proceed to discretization of elliptic operators, starting with constant diffusion tensor and ending with operators in divergence form. Finally, we discuss W‐convergence in detail, and mention convergence in C and L1 spaces. We conclude by a numerical example illustrating the schemes and convergence results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A k-graph, H = (V, E), is tight if for every surjective mapping f: V → {1,….k} there exists an edge α ? E sicj tjat f|α is injective. Clearly, 2-graphs are tight if and only if they are connected. Bounds for the minimum number ? of edges in a tight k-graph with n vertices are given. We conjecture that ? for every n and prove the equality when 2n + 1 is prime. From the examples, minimal embeddings of complete graphs into surfaces follow. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号