首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size, which allow evaluation of the singular value decomposition of the matrix defining the problem, are the truncated singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regularization and truncated singular value decomposition. Computed examples illustrate the benefit of the proposed method.  相似文献   

2.
The computation of an approximate solution of linear discrete ill-posed problems with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov regularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation. This regularization method requires that a suitable value of the regularization parameter be chosen. Recently, Brezinski et al. (Numer Algorithms 49, 2008) described new approaches to estimate the error in approximate solutions of linear systems of equations and applied these estimates to determine a suitable value of the regularization parameter in Tikhonov regularization when the approximate solution is computed with the aid of the singular value decomposition. This paper discusses applications of these and related error estimates to the solution of large-scale ill-posed problems when approximate solutions are computed by Tikhonov regularization based on partial Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates. In memory of Gene H. Golub. This work was supported by MIUR under the PRIN grant no. 2006017542-003 and by the University of Cagliari.  相似文献   

3.
Nonstationary iterated Tikhonov is an iterative regularization method that requires a strategy for defining the Tikhonov regularization parameter at each iteration and an early termination of the iterative process. A classical choice for the regularization parameters is a decreasing geometric sequence which leads to a linear convergence rate. The early iterations compute quickly a good approximation of the true solution, but the main drawback of this choice is a rapid growth of the error for later iterations. This implies that a stopping criteria, e.g. the discrepancy principle, could fail in computing a good approximation. In this paper we show by a filter factor analysis that a nondecreasing sequence of regularization parameters can provide a rapid and stable convergence. Hence, a reliable stopping criteria is no longer necessary. A geometric nondecreasing sequence of the Tikhonov regularization parameters into a fixed interval is proposed and numerically validated for deblurring problems.  相似文献   

4.
In this paper we introduce a new variant of L-curve to estimate the Tikhonov regularization parameter for the regularization of discrete ill-posed problems. This method uses the solution norm versus the regularization parameter. The numerical efficiency of this new method is also discussed by considering some test problems.  相似文献   

5.
In this paper we consider a collocation method for solving Fredholm integral equations of the first kind, which is known to be an ill-posed problem. An “unregularized” use of this method can give reliable results in the case when the rate at which smallest singular values of the collocation matrices decrease is known a priori. In this case the number of collocation points plays the role of a regularization parameter. If the a priori information mentioned above is not available, then a combination of collocation with Tikhonov regularization can be the method of choice. We analyze such regularized collocation in a rather general setting, when a solution smoothness is given as a source condition with an operator monotone index function. This setting covers all types of smoothness studied so far in the theory of Tikhonov regularization. One more issue discussed in this paper is an a posteriori choice of the regularization parameter, which allows us to reach an optimal order of accuracy for deterministic noise model without any knowledge of solution smoothness.  相似文献   

6.
In this paper, we investigate a problem of the identification of an unknown source on Poisson equation from some fixed location. A conditional stability estimate for an inverse heat source problem is proved. We show that such a problem is mildly ill‐posed and further present two Tikhonov‐type regularization methods (a generalized Tikhonov regularization method and a simplified generalized Tikhonov regularization method) to deal with this problem. Convergence estimates are presented under the a priori choice of the regularization parameter. Numerical results are presented to illustrate the accuracy and efficiency of our methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is devoted to solve a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain by the Tikhonov regularization method. Based on the eigenfunction expansion of the solution, the backward problem for searching the initial data is changed to solve a Fredholm integral equation of the first kind. The conditional stability for the backward problem is obtained. We use the Tikhonov regularization method to deal with the integral equation and obtain the series expression of solution. Furthermore, the convergence rates for the Tikhonov regularized solution can be proved by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Two numerical examples in one-dimensional and two-dimensional cases respectively are investigated. Numerical results show that the proposed method is effective and stable.  相似文献   

8.
解第一类算子方程的一种新的正则化方法   总被引:4,自引:0,他引:4  
杨宏奇  侯宗义 《数学学报》1997,40(3):369-376
对算子与右端都为近似给定的第一类算子方程提出一种新的正则化方法,依据广义Arcangeli方法选取正则参数,建立了正则解的收敛性。这种新的正则化方法与通常的Tikhonov正则化方法相比较,提高了正则解的渐近阶估计。  相似文献   

9.
反问题是现在数学物理研究中的一个热点问题,而反问题求解面临的一个本质性困难是不适定性。求解不适定问题的普遍方法是:用与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法.如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容.当前,最为流行的正则化方法有基于变分原理的Tikhonov正则化及其改进方法,此类方法是求解不适定问题的较为有效的方法,在各类反问题的研究中被广泛采用,并得到深入研究.  相似文献   

10.
We consider the perturbation analysis of two important problems for solving ill-conditioned or rank-deficient linear least squares problems. The Tikhonov regularized problem is a linear least squares problem with a regularization term balancing the size of the residual against the size of the weighted solution. The weight matrix can be a non-square matrix (usually with fewer rows than columns). The minimum-norm problem is the minimization of the size of the weighted solutions given by the set of solutions to the, possibly rank-deficient, linear least squares problem.It is well known that the solution of the Tikhonov problem tends to the minimum-norm solution as the regularization parameter of the Tikhonov problem tends to zero. Using this fact and the generalized singular value decomposition enable us to make a perturbation analysis of the minimum-norm problem with perturbation results for the Tikhonov problem. From the analysis we attain perturbation identities for Tikhonov inverses and weighted pseudoinverses.  相似文献   

11.
The stable solution of ill-posed non-linear operator equations in Banach space requires regularization. One important approach is based on Tikhonov regularization, in which case a one-parameter family of regularized solutions is obtained. It is crucial to choose the parameter appropriately. Here, a sequential variant of the discrepancy principle is analysed. In many cases, such parameter choice exhibits the feature, called regularization property below, that the chosen parameter tends to zero as the noise tends to zero, but slower than the noise level. Here, we shall show such regularization property under two natural assumptions. First, exact penalization must be excluded, and secondly, the discrepancy principle must stop after a finite number of iterations. We conclude this study with a discussion of some consequences for convergence rates obtained by the discrepancy principle under the validity of some kind of variational inequality, a recent tool for the analysis of inverse problems.  相似文献   

12.
A common way to handle the Tikhonov regularization method for the first kind Fredholm integral equations, is first to discretize and then to work with the final linear system. This unavoidably inflicts discretization errors which may lead to disastrous results, especially when a quadrature rule is used. We propose to regularize directly the integral equation resulting in a continuous Tikhonov problem. The Tikhonov problem is reduced to a simple least squares problem by applying the Golub-Kahan bidiagonalization (GKB) directly to the integral operator. The regularization parameter and the iteration index are determined by the discrepancy principle approach. Moreover, we study the discrete version of the proposed method resulted from numerical evaluating the needed integrals. Focusing on the nodal values of the solution results in a weighted version of GKB-Tikhonov method for linear systems arisen from the Nyström discretization. Finally, we use numerical experiments on a few test problems to illustrate the performance of our algorithms.  相似文献   

13.
In this paper, we solve the backward problem for a time-fractional diffusion equation with variable coefficients in a bounded domain by using the revised generalized Tikhonov regularization method. Convergence estimates under an a-priori and a-posteriori regularization parameter choice rules are given. Numerical example shows that the proposed method is effective and stable.  相似文献   

14.
Tikhonov Regularization of Large Linear Problems   总被引:1,自引:0,他引:1  
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a new numerical method, based on Lanczos bidiagonalization and Gauss quadrature, for Tikhonov regularization of large-scale problems. An estimate of the norm of the error in the data is assumed to be available. This allows the value of the regularization parameter to be determined by the discrepancy principle.  相似文献   

15.
Electrical impedance tomography (EIT), as an inverse problem, aims to calculate the internal conductivity distribution at the interior of an object from current-voltage measurements on its boundary. Many inverse problems are ill-posed, since the measurement data are limited and imperfect. To overcome ill-posedness in EIT, two main types of regularization techniques are widely used. One is categorized as the projection methods, such as truncated singular value decomposition (SVD or TSVD). The other categorized as penalty methods, such as Tikhonov regularization, and total variation methods. For both of these methods, a good regularization parameter should yield a fair balance between the perturbation error and regularized solution. In this paper a new method combining the least absolute shrinkage and selection operator (LASSO) and the basis pursuit denoising (BPDN) is introduced for EIT. For choosing the optimum regularization we use the L1-curve (Pareto frontier curve) which is similar to the L-curve used in optimising L2-norm problems. In the L1-curve we use the L1-norm of the solution instead of the L2 norm. The results are compared with the TSVD regularization method where the best regularization parameters are selected by observing the Picard condition and minimizing generalized cross validation (GCV) function. We show that this method yields a good regularization parameter corresponding to a regularized solution. Also, in situations where little is known about the noise level σ, it is also useful to visualize the L1-curve in order to understand the trade-offs between the norms of the residual and the solution. This method gives us a means to control the sparsity and filtering of the ill-posed EIT problem. Tracing this curve for the optimum solution can decrease the number of iterations by three times in comparison with using LASSO or BPDN separately.  相似文献   

16.
该文研究了一个热源识别问题,通过引入修正吉洪诺夫方法来处理问题的不适定性,在一种先验和一种后验参数选取准则下,分别获得了问题的误差估计.数值例子进一步验证了方法的有效性和稳定性.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(19-20):4686-4693
In this paper, we consider the problem for identifying the unknown source in the Poisson equation. The Tikhonov regularization method in Hilbert scales is extended to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. The user does not need to estimate the smoothness parameter and the a priori bound of the exact solution when the a posteriori choice rule is used. Numerical examples show that the proposed method is effective and stable.  相似文献   

18.
本文研究了双调和方程柯西问题,这类是不适定的,即问题的解(如果存在)不连续依赖于测量数据.首先在精确解的先验假设下给出问题的条件稳定性结果.接着利用修正的Tikhonov正则化方法求解此不适定问题.在先验和后验正则化参数选取规则下,给出正则解和精确解之间的误差估计式.最后给出几个数值例子验证此正则化方法求解此类反问题的有效性.  相似文献   

19.
In this paper, we investigate a Cauchy problem associated with Helmholtz-type equation in an infinite “strip”. This problem is well known to be severely ill-posed. The optimal error bound for the problem with only nonhomogeneous Neumann data is deduced, which is independent of the selected regularization methods. A framework of a modified Tikhonov regularization in conjunction with the Morozov’s discrepancy principle is proposed, it may be useful to the other linear ill-posed problems and helpful for the other regularization methods. Some sharp error estimates between the exact solutions and their regularization approximation are given. Numerical tests are also provided to show that the modified Tikhonov method works well.  相似文献   

20.
In this paper, we consider the inverse problem for identifying the source term and initial value simultaneously in a space-fractional Allen-Cahn equation. This problem is ill-posed, i.e., the solution of this problem does not depend continuously on the data. The fractional Tikhonov method is used to solve this problem. Under the a priori and the a posteriori regularization parameter choice rules, the error estimates between the regularization solutions and the exact solutions are obtained, respectively. Different numerical examples are presented to illustrate the validity and effectiveness of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号