首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] One-pot allene synthesis from aryl iodides 1 and propargyldicyclohexylamine 2 proceeded in the presence of Pd(2)(dba)(3).CHCl(3) catalyst (2.5 mol %), 1,2-bis(diphenylphosphino)carborane 5 (10 mol %), CuI (15 mol %), and Et(3)N (150 mol %) to give the corresponding allenes 4 in good to high yields. Electron-deficient bidentate phosphines, such as 1,2-bis(diphenylphosphino)carborane 5 and (C(6)F(5))(2)PC(2)H(4)P(C(6)F(5))(2), play the role of a dual mode ligand for both the Sonogashira coupling and hydride-transfer reactions.  相似文献   

2.
[reaction: see text] Propargylic diisopropylamines containing heterocycles, which were prepared readily from heterocyclic bromides and propargyldiisopropylamine by the Sonogashira coupling reaction, underwent the allene transformation reaction in the presence of Pd(2)(dba)(3).CHCl(3) catalyst (2.5 mol %) and 1,2-bis[bis(pentafluorophenyl)phosphino]ethane (10 mol %) at 100 degrees C in CHCl(3), giving the corresponding heterocyclic allenes in good to high yields via the palladium-catalyzed hydride-transfer reaction.  相似文献   

3.
Synthesis of allenes has been achieved by using palladium-catalyzed hydrogen-transfer reactions. Various propargylic amines, which were readily prepapred from iodobenzenes and propargylic amines by Sonogashira coupling reaction, underwent the hydrogen-transfer reaction in the presence of Pd2dba3.CHCl3/(C6F5)3P catalyst at 100 degrees C in dioxane for 24 h, giving the corresponding allenes in 43-99% yields. Various propargylic alcohols containing a propargylic aminomethyl group, synthesized by the addition of lithium acetylides of N,N-diisopropylprop-2-ynylamine to aldehydes and a ketone, also underwent the hydrogen-transfer reaction in the presence of Pd2dba3.CHCl3 catalyst and (C6F5)3P at 80 degrees C in dioxane, giving the corresponding allenes in 56-92% yields. In the current transformation, propargylic amines can be handled as an allenyl anion equivalent and introduced into various electrophiles to be transformed into allenes under palladium-catalyzed conditions.  相似文献   

4.
The first palladium-catalyzed alkylation of vinyl oxiranes with substituted allenes to form functionalized allylic alcohols is described. The reaction of activated allenes 5 with vinyl oxiranes 1 in the presence of catalytic amounts of Pd(PPh(3))(4) (10 mol %) and 1,3-bis(diphenylphosphino)propane (dppp) (20 mol %) in THF at 60 degrees C gave the corresponding allylic alcohols 6 in good to excellent yields. The allylic alcohols were obtained in different ratios of trans/ cis isomers.  相似文献   

5.
A new method for the synthesis of substituted 2-acylallylmetal reagents in a highly regio- and stereoselective fashion involving a three-component assembly of allenes, acyl chlorides, and bimetallic reagents (B-B, Si-Si, and Sn-Sn) catalyzed by phosphine-free palladium complexes is described. Treatment of various allenes (CR(2)R(3)=C=CH(2)) with acyl chlorides (R(1)COCl) and bispinacolatodiboron in the presence of PdCl(2)(CH(3)CN)(2) in toluene at 80 degrees C gave 2-acylallylboronates in moderate to good yields. The acylsilation of allenes with acid chlorides and hexamethyldisilane (5) proceeded successfully in the presence of Pd(dba)(2) in CH(3)CN affording the corresponding allylsilanes (CR(2)R(3)=C(COR(1))CH(2)SiMe(3)) in good to moderate yields. Several chloroformates (R(4)OCOCl) also react with 1,1-dimethylallene (2a) and 5 to afford allylsilanes (CR(2)R(3)=C(COOR(4))CH(2)SiMe(3)) in 66-70% yields. Acylstannation of allenes could also be achieved by slow addition of hexabutylditin (10) to the reaction mixture of acyl chloride (or chloroformate) and allene 2a in CH(3)CN in the presence of Pd(dba)(2) at 60 degrees C; the corresponding 2-substituted allylstannanes were isolated in moderate to good yields. The above catalytic reactions are completely regioselective and highly stereoselective. A mechanism is proposed to account for the catalytic reactions and the stereochemistry.  相似文献   

6.
The allenes 1,2,3,4,5‐pentafluoro‐6‐(3‐phenylpropa‐1,2‐dienyl)benzene 4 , 3‐(3‐phenylpropa‐1,2‐dienyl)pyridine 11 and 3‐(3‐(pyridine‐3‐yl)propa‐1,2‐dienyl)pyridine 17 and the acetylenes 5 , 12 and 16 were obtained by reduction of the corresponding propargylic acetates 3 , 10 and 15 by Samarium(II) iodide in the presence of Pd(0). Base‐promoted isomerisation of acetylene 12 provided allene 11 in a yield of 80%. 1‐(Pentafluorophenyl)‐3‐phenylprop‐2‐yn‐1‐ol 2 was prepared from phenylacetylene and pentafluorobenzaldehyde. The condensation of nicotinaldehyde with trimethylsilylacetylene gave the 3‐(trimethylsilyl)‐1‐(pyridine‐3‐yl)prop‐2‐yn‐1‐ol 7 . The removal of the silyl group of 7 to acetylene 8 was done in basic conditions. The Pd catalysed condensation of the acetylene 8 with iodobenzene gave 3‐phenyl‐1‐(pyridine‐3‐yl)prop‐2‐yn‐1‐ol 9 . The Pd catalysed condensation of 8 with 3‐bromopyridine gave the 1,3‐dipyridin‐3‐yl‐prop‐2‐yn‐1‐ol 14 . The propargylic alcohols 2 , 9 and 14 were converted to the acetates 3 , 10 and 15 with acetic anhydride‐pyridine.  相似文献   

7.
Catalytic metal hydride hydrogen atom transfer (MHAT) reactions have proven to be a powerful method for alkene functionalization. This work reports the discovery of Co-porphines as highly efficient MHAT catalysts with a loading of only 0.01 mol % for unprecedented chemoselective allene functionalization under photoirradiation. Moreover, the newly developed bimetallic strategy by the combination of photo Co-MHAT and Ti catalysis enabled the successful carbonyl allylation with a wide range of amino, oxy, thio, aryl, and alkyl-allenes providing expedient access to valuable β-functionalized homoallylic alcohols in over 100 examples with exceptional regio- and diastereoselectivity. Mechanism studies and DFT calculations supported that selectively transferring hydrogen atoms from cobalt hydride to allenes and generating allyl radicals is the key step in the catalytic cycle.  相似文献   

8.
Phosphonoketene dithioacetals 3a-e were obtained in good yields by the reaction of ethyl phosphonoacetates 1a,b with 2-4 equiv of thiols 2a-c in the presence of an alkylaluminum dichloride or dialkylaluminum chlorides. Reaction of 2,2-dithio-1-phosphonovinyl anions with aldehydes afforded allylic alcohols 4-7, 11-18 in good to moderate yields. Treatment of the alcohols 4-6 with t-BuOK in THF led to symmetrical [2 + 2] cycloadducts 20-22 of 1,1-(ethylenedithio)allenes in moderate yields, while a similar reaction of the alcohols 11-13 produced a mixture of symmetrical and unsymmetrical [2 + 2] cycloadducts of 1,1-(trimethylenedithio)allenes,23a-25a and 23b-25b, in 55-94% yields. The alcohol 15 on a similar treatment gave 3-tert-butyl-1,1-bis(ethylthio)allene (26) in quantitative yield. The structures of 20 and 23b were determined by X-ray analysis. Treatment of the alcohols 15 and 18 with trifluoromethanesulfonic acid/n-Bu(4)NX (X = Br, I) or triphenylphosphine/CBr(4) in CH(2)Cl(2) afforded alpha-phosphonodithioacryclic acid esters 34 and 35 in 25-52% yields. The tandem Michael-Wittig reaction of 35 with sodium salt of 2-pyrrolecarbaldehyde in DMF gave ethyl 3-phenyl-3H-cyclopenta[a]pyrrole-2-dithiocarboxylate (36) in 25% yield.  相似文献   

9.
Palladium(0)-catalyzed reaction of allene-substituted allylic carboxylates 3-8 employing 2-5 mol % of Pd(dba)(2) in refluxing toluene leads to the carbocyclization and elimination of carboxylic acid to give bicyclo[4.3.0]nonadiene and bicyclo[5.3.0]decadiene derivatives (12-17). The carbon-carbon bond formation is stereospecific, occurring syn with respect to the leaving group. Addition of maleic anhydride as a ligand to the above-mentioned procedures changed the outcome of the reaction, and under these conditions 3-5 afforded cycloisomerized products 21-23. The experimental results are consistent with a mechanism involving oxidative addition of the allylic carboxylate to Pd(0) to give an electron-deficient (pi-allyl)palladium intermediate, followed by nucleophilic attack by the allene on the face of the pi-allyl opposite to that of the palladium atom. Furthermore, it was found that the Pd(dba)(2)-catalyzed cyclization of the trans-cycloheptene derivative (trans-8) can be directed to give either the trans-fused (trans-17) or the cis-fused (cis-17) ring system by altering the solvent. The former reaction proceeds via a nucleophilic trans-allene attack on the (pi-allyl)palladium intermediate, whereas the latter involves a syn-allene insertion into the allyl-Pd bond of the same intermediate. The products from the carbocylization undergo stereoselective Diels-Alder reactions to give stereodefined polycyclic systems in high yields.  相似文献   

10.
Ngai MY  Skucas E  Krische MJ 《Organic letters》2008,10(13):2705-2708
Under the conditions of ruthenium-catalyzed transfer hydrogenation employing 2-propanol as the terminal reductant, 1,1-disubstituted allenes 1a- h engage in reductive coupling to paraformaldehyde to furnish homoallylic alcohols 2a- h. Under identical transfer hydrogenation conditions, 1,1-disubstituted allenes engage in reductive coupling to aldehydes 3a- f to furnish homoallylic alcohols 4a- n. In all cases, reductive coupling occurs with branched regioselectivity to deliver homoallylic alcohols bearing all-carbon quaternary centers.  相似文献   

11.
In the presence of 2.5 mol % of [Pd(2)(dba)(3)] (dba=dibenzylideneacetone) and 5 mol % of PPh(3), nearly equimolar amounts of dimethyl nona-2,7-diyne-1,9-dioate derivatives (diyne diesters) and dialkyl acetylenedicarboxylates were allowed to react in toluene at 110 degrees C to afford [2+2+2] cycloadducts in moderate-to-good yields. Similarly, dimethyl trideca-2,7,12-triyne-1,13-dioate derivatives (triyne diesters) were catalytically transformed into phthalic acid ester analogues in excellent yields. To gain insight into the mechanism of these intramolecular alkyne cyclotrimerizations, stoichiometric reactions of [Pd(2)(dba)(3)] with a diyne diester and a triyne diester bearing ether tethers were conducted in acetone at room temperature to furnish an oligomeric bicyclopalladacyclopentadiene and a Pd(0) triyne complex, respectively. The structures of these novel complexes were unequivocally determined by Xray structure analysis. The isolated triyne complex was heated at 50 degrees C or treated with PPh(3) in acetone at room temperature to afford the arene product. Furthermore, the same complex catalyzed the triyne cyclization with or without PPh(3).  相似文献   

12.
Montgomery J  Song M 《Organic letters》2002,4(23):4009-4011
The direct cyclization of allenyl aldehydes with organozincs in the presence of Ni(COD)(2) provides synthetically versatile homoallylic alcohols. Both monosubstituted and 1,3-disubstituted allenes participate in the process, with the latter allowing preparation of stereochemically defined trisubstituted alkenes. [reaction: see text]  相似文献   

13.
The palladium-catalyzed tandem arylation of O-homoallylhydroxylamines with 2 equiv of aryl bromides was examined. With Pd2(dba)3 (1 mol %) as the catalyst, Xantphos (2 mol %) as the ligand, and NaOt-Bu as the base, the reactions of O-homoallylhydroxylamines with aryl bromides via sequential N-arylation/cyclization/C-arylation in toluene afforded the corresponding N-aryl-3-arylmethylisoxazolidines in good yields with excellent diastereoselectivity.  相似文献   

14.
The feature article surveys the transition metal-catalyzed three-component coupling of allenes and the related allylation reactions. Most of the reactions shown in the article mechanistically proceed via oxidative addition of organic electrophiles to metals, followed by carbometallation of allene and then transmetalation by main group metals or reagents and organometallic reagents. These reactions provide an efficient route for the synthesis of various substituted allyl and vinyl metal reagents and complex organic molecules in highly regio-, stereo- and chemoselective manner in one pot. The metal reagents or pi-allyl-metal intermediates obtained from the reaction are utilized for the allylation of aldehydes, ketones and imines, producing various homoallylic alcohols and amines in a highly regio- and stereoselective manner.  相似文献   

15.
The effect of adding 1 equiv. of an amine or 0.2 equiv. of CuI to a Pd/In bimetallic cascade reaction is described. In the class 1 cascade reaction of aldehydes, aryl iodides and allene, generating homoallylic alcohols, the reaction time is reduced from 16 to 2 h and is accompanied by an impressive increase in yield.  相似文献   

16.
The reactivity of a series of N,N-dimethyl-2-iodoanilines bearing different chelating "arms" at the 3-position with Pd(2)(dba)(3) has been explored. 3-[(Diphenylphosphino)methyl]-2-iodo-N,N-dimethylaniline reacted with Pd(2)(dba)(3) and PPh(3) under aerobic conditions to give the OCP-pincer complex , which was formed by sequential C(sp(3))-H activation/oxidation at the alpha-position of the aniline N atom. On the other hand, under similar reaction conditions, 3-[2-(dimethylamino)ethyl]-2-iodo-N,N-dimethylaniline afforded the CCN-pincer complex , after a second C-H activation process at the formyl group of the initially formed OCN-pincer complex. In contrast, 2-iodo-3-(1H-1,2,4-triazol-1-ylmethyl)-N,N-dimethylaniline and 2-iodo-3-(pyrazol-1-ylmethyl)-N,N-dimethylaniline reacted with Pd(2)(dba)(3) and PPh(3), respectively, to give the 6-membered azapalladacycles and , in which the aniline nitrogen is merely a spectator substituent. Finally, treatment of iodide complex with Tl(TfO) afforded the CN-bidentate cationic complex. Solid-state structures of palladium complexes, and CH(2)Cl(2).3CH(3)OH.5H(2)O were determined by X-ray analysis.  相似文献   

17.
A complex derived from Ni(cod)2 and NHC-IPr catalyzes a three-component coupling reaction involving allenes, aldehydes, and organosilanes and transfers the axial chirality of the allene to a stereogenic center in the product with very high fidelity. An unexpected regioselectivity is observed; favored are allylic rather than homoallylic alcohol derivatives, corresponding to the unusual process of coupling two electrophilic atoms: the allene sp and aldehyde carbon atoms. In all cases, high enantioselectivity, high Z/E selectivity, and, with differentially substituted allenes, high site selectivity are observed. This transformation represents the first enantioselective multicomponent coupling process of allenes.  相似文献   

18.
InI-mediated direct allylation of carbonyl compounds with allylic alcohols proceeded smoothly with catalytic amounts of Ni(acac)(2) and PPh(3) to give the corresponding homoallylic alcohols in high yields. Allylindium compounds were shown to be the real allylating agents in the present system. Substituted allylic alcohols gave branched homoallylic alcohols with syn-selectivity irrespective of the geometry of the starting allylic alcohols, whereas high anti-selectivity was observed when a bulky substituent is present in the allylic alcohols. The outcome of the diastereoselectivity is discussed on the basis of the reaction mechanism, comparing with the corresponding Pd-catalyzed version. Another distinct behavior between the Ni- and Pd-catalyzed allylation was demonstrated in the reaction of hex-1,5-diene-3,4-diol derivatives: the Pd catalyst did not give any coupling product, whereas the Ni-catalyzed InI-mediated reaction with benzaldehyde afforded the 1:1 and 1:2 adduct diols selectively depending on the reaction conditions.  相似文献   

19.
The Pd(0)-mediated rapid coupling of methyl iodide with an excess of alkenyltributylstannane was examined with the aim of incorporating a short-lived 11C-labeled methyl group into a biologically significant organic compound with a 1-methylalkene unit for the synthesis of a PET tracer. Four sets of reaction conditions (A-D) were used, all performed in DMF at 60 degrees C for 5 min. Condition B, using CH3I/stannane/Pd2(dba)3/P(o-tolyl)3/CuCl/K2CO3 (1:40:0.5:4-6:2:5), works well in almost all cases. Condition D, using CH3I/stannane/Pd2(dba)3/P(o-tolyl)3/CuX (X = Br, Cl, or I)/CsF (1:40:0.5-5:2-20:2-20:5-50), shows the best results with regard to general applicability to tin substrates, affording the corresponding methylated product in >90% yield based on consumption of methyl iodide. P(t-Bu)2Me was less effective than P(o-tolyl)3, particularly for alpha,beta-unsaturated carbonyl substrates. No regio- or stereoisomerization occurred under these reaction conditions. The efficiency of the protocol was demonstrated by synthesis of an 11C-methylated compound.  相似文献   

20.
Described is an asymmetric synthesis of cyclic and acyclic allylic S-aryl and S-alkyl sulfones through a highly selective palladium(0)-catalyzed 1,3-rearrangement of racemic allylic sulfinates. Treatment of racemic cyclic and acyclic allylic S-tolyl- and S-tert-butylsulfinates with Pd(2)(dba)(3).CHCl(3) as precatalyst and N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)benzamide] as ligand for the palladium atom afforded the corresponding isomeric allylic S-tolyl and S-tert-butyl sulfones of 93-99% ee in 82-96% yield. The rearrangement of the allylic sulfinates most likely proceeds in an intermolecular fashion via formation of a cationic pi-allylpalladium complex and the sulfinate ion. The racemic allylic sulfinates were obtained from the corresponding racemic alcohols and racemic tolylsulfinyl chloride and racemic tert-butylsulfinyl chloride, respectively, in high yields. Rearrangement of the racemic tert-butylsulfinic acid 2-cyclooct-1-enyl ester with Pd(2)(dba)(3).CHCl(3) and the bisphosphane was accompanied by a highly selective kinetic resolution of the substrate and gave at 50% conversion the (R)-configured sulfinate as mixture of the S(S) and R(S) diastereomers of 92% ee and 85% ee and the (S)-configured 3-tert-butylsulfonyl cyclooctene sulfone 15a with 98% ee in almost quantitative yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号