首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Kahle KA  Foley JP 《Electrophoresis》2007,28(11):1723-1734
The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.  相似文献   

2.
Numerous combinations of one-, two-, and three-chiral-component microemulsions have been previously prepared in our group, using N-dodecoxycarbonylvaline (DDCV), 2-hexanol, and ethyl acetate, dibutyl tartrate, or diethyl tartrate. A few results of the various formulations investigated suggested the possible presence of minor impurities in one or more components of the microemulsion. In this study, the purity of the current lots of R- and S-surfactant were measured, as was the subsequent effect of minor impurities on the relevant chromatographic figures of merit (CFOMs) that describe a chiral separation, i.e., efficiency, enantioselectivity, retention, migration window (elution range), and resolution. Two related methods are proposed for correcting enantioselectivities measured in the presence of chiral impurities in the chiral microemulsion.  相似文献   

3.
Kahle KA  Foley JP 《Electrophoresis》2006,27(4):896-904
In this study, the combination of two chiral components in a microemulsion formulation for the separation of enantiomers via microemulsion EKC (MEEKC) was successfully accomplished. Previous publications of chiral microemulsions have utilized only one chiral entity; the surfactant, cosurfactant, or oil was chiral. This is the first study, to date, of the effects of using two chiral species in a single pseudostationary phase (PSP). The chiral surfactant dodecoxycarbonylvaline (DDCV) was used in conjunction with the chiral cosurfactant S-2-hexanol. Ethyl acetate was incorporated as the oil core of the microemulsion and the buffer was 50 mM phosphate at a pH of 7. Additionally, a microemulsion prepared with racemic 2-hexanol was used for comparison to a previous DDCV microemulsion and as a baseline for the newly formulated dual chiral microemulsion. The efficiencies, resolutions, and enantioselectivities for the S-2-hexanol, racemic 2-hexanol, and original 1-butanol DDCV microemulsions are compared. The hexanol-based PSPs provide improved efficiencies and resolutions. To evaluate the combination of each DDCV enantiomer (R and S) with S-2-hexanol, changes in Gibb's free energy were calculated. A synergistic effect was found when two chiral components were combined to form a microemulsion.  相似文献   

4.
Kahle KA  Foley JP 《Electrophoresis》2007,28(17):3024-3040
Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).  相似文献   

5.
Mertzman MD  Foley JP 《Electrophoresis》2004,25(4-5):723-732
In a previous publication (Pascoe, R., Foley, J. P., Analyst 2002, 127, 710-714), a novel chiral microemulsion based on 1.0% w/v dodecoxycarbonylvaline (DDCV), 0.50% v/v ethyl acetate and 1.2% v/v 1-butanol, was shown to provide rapid enantiomeric separations of various pharmaceutical compounds. The two deficiencies noted with this method were that the peak shapes obtained were asymmetric and the efficiencies were lower than those previously obtained using DDCV micelles (Peterson, A. G., Ahuja, E. S., Foley, J. P., J. Chromatogr. B 1996, 683, 15-28). This study examines the use of three alternative low-interfacial-tension oils (methyl acetate, methyl propionate, and methyl formate), in combination with DDCV, to characterize their effect on the elution range, efficiency, resolution, and enantioselectivity of various pharmaceutical enantiomers. The oils were evaluated in both the same volume percentage and the same molar concentration as ethyl acetate in the original DDCV microemulsion system. Including ethyl acetate, a total of seven microemulsion systems were examined. For the compounds that were separated, average enantioselectivities ranged from 1.09 to 1.28, with corresponding efficiencies of 14,000-20,000. While some interesting differences were observed, ethyl acetate still proved to be the most advantageous in terms of enantioselectivity, resolution, and elution range.  相似文献   

6.
Pascoe R  Foley JP 《The Analyst》2002,127(6):710-714
A novel oil-in-water microemulsion incorporating the chiral surfactant dodecoxycarbonylvaline (DDCV) was used to achieve the rapid enantiomeric separation of pharmaceutical drugs by electrokinetic chromatography (EKC). Incorporation of DDCV into a microemulsion resulted in an elution range more than double that provided the micellar form of the surfactant aggregate. Interestingly, for the same compounds the enantioselectivity provided by the chiral DDCV microemulsions ranged from 1.06-1.30 for the neutral and cationic drugs, which was slightly higher than that provided by chiral DDCV micelles. The use of a low surface tension oil (ethyl acetate) permitted a much lower concentration of chiral surfactant to be employed; this, together with the use of a zwitterionic buffer (ACES) resulted in a very low conductivity microemulsion that allowed a higher separation voltage to be utilized, resulting in rapid enantiomeric separations (< 8 min.). Mobility matching of the buffer cation(s) was used to improve peak shape and efficiencies. In our limited survey of the phase diagram, the optimum composition of the microemulsion buffer was 1.0% (w/v) DDCV (30 mM), 0.5% (v/v) ethyl acetate, 1.2% (v/v) 1-butanol and 50 mM ACES buffer at pH 7.  相似文献   

7.
Immobilized polysaccharide-based chiral stationary phases (CSPs) are gaining importance in the resolution of racemic compounds due to their stable nature on working with normal solvents and those prohibited for use with coated phases (tetrahydrofuran, chloroform, dichloromethane, acetone, 1,4-dioxane, ethyl acetate, and certain other ethers). This review discusses the use of immobilized polysaccharide CSPs in the chiral resolution of various racemates by liquid chromatography. The discussion includes immobilization methodologies, enantioselectivities, efficiencies, and a comparison of chiral recognition capabilities of coated vs. immobilized CSPs. Some applications of immobilized CSPs to the chiral resolution of racemic compounds are also presented.  相似文献   

8.
Mertzman MD  Foley JP 《Electrophoresis》2004,25(18-19):3247-3256
The enantiomeric resolution of 15 different pharmaceutical compounds was explored using chiral microemulsion electrokinetic chromatography (MEEKC). The microemulsion employed was comprised of the chiral surfactant dodecoxycarbonylvaline (DDCV), 1-butanol, and ethyl acetate, at an initial composition of 1% w/v:1.2% v/v:0.5% v/v, respectively. The effect of varying the background buffer composition, voltage, and ultimately the surfactant concentration and/or aggregate phase ratio were examined. Changing from a zwitterionic buffer ((2-[2-amino-2-oxoethyl)amino]ethanesulfonic acid, ACES) to the same concentration of phosphate buffer improved the efficiency and decreased overall analysis time, but also resulted in a decrease in chiral resolution. Furthermore, using phosphate buffer while simultaneously increasing the percent DDCV from 1 to 4% increased the efficiencies from a range of 34,000 to 59,000 N/m to a range of 160,000 to 400,000 N/m. While the enantioselectivities did not change significantly, the improvement in efficiencies, elution range, and retention factors provided an increase in both resolution and the number of enantiomers that were separated. Using an optimized microemulsion comprised of phosphate buffer and 4% DDCV, chiral separation was achieved for all 11 pairs of enantiomers, with a resolution ranging from 0.90 to 4.71. Moreover, the average resolution doubled in going from nonoptimized to optimized conditions for five of the eleven compounds. Finally, a comparison was made of the effect of increasing only the surfactant concentration by a factor of 4 versus increasing the overall composition (or phase ratio) by a factor of 4. Ultimately, the microemulsion containing 4% DDCV provided a larger elution range, greater resolution, and more optimal retention than that provided by the 4x phase increase.  相似文献   

9.
A novel method using microemulsion electrokinetic chromatography combining accelerated solvent extraction was developed for quantitative analysis of six phthalate esters (PAEs) including dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, as well as dioctyl phthalate. The effect of each individual component within the microemulsions, i.e. oil phase, surfactant and co-surfactant on resolution of the analytes was systematically studied. Baseline separation of six PAEs was achieved within 26?min by using the microemulsion buffer containing a 60?mmol/L borate buffer at pH 9.0, 0.5% v/v n-octane as oil droplets, 100?mmol/L sodium cholate as surfactant and 5.0% v/v 1-butanol as co-surfactant. The purposed accelerated solvent extraction-microemulsion electrokinetic chromatography method was successfully applied to the determination of trace amount of PAEs in soil samples collected from three different fields in areas of Fujian Province and the contents of dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate and dioctyl phthalate were 0.63-0.68, 0.32-0.63, 2.53-3.96, 0-1.75, 7.32-11.7 and 0-3.46mg/kg, respectively. It was validated that the results were consistent with those obtained by GC-MS method.  相似文献   

10.
Based on the investigation of the effect of microemulsion charge on the chiral separation, a new chiral separation method with MEEKC employing neutral microemulsion was established. The method used a microemulsion containing 3.0% (w/v) neutral surfactant Tween 20 and 0.8% (w/v, 30 mM) dibutyl l ‐tartrate in 40 mM sodium tetraborate buffer to separate the enantiomers of β‐blockers. The effect of major parameters on the chiral separation was investigated. The applied voltage had little effect on the resolution, but the chiral separation could be improved by suppressing the EOF. Nine racemic β‐blockers obtained relatively good enantioseparation after appropriate concentrations of tetradecyl trimethyl ammonium bromide were added into the microemulsion to suppress the EOF. These results were explained based on the analysis of the separation mechanism of the method and deduced separation equations. The resolution equation of the method was further elucidated. It was found that the fourth term in the resolution equation, an additional term compared to the conventional resolution equation for column chromatography, represents the ratio of the relative movement distance between the analyte and microemulsion droplets relative to the effective capillary length. It can be regarded as a correction for the effective capillary length. These findings are significant for the development of the theory of MEEKC and the development of new chiral MEEKC method.  相似文献   

11.
Dodecoxycarbonylvaline (DDCV) microemulsions (1% and 4%, w/v) were employed to evaluate the retention mechanism of a series of enantiomers over a temperature range of 15-35 degrees C. From the acquired retention data, van't Hoff plots were constructed and enthalpy and entropy of transfer were calculated from the slope and intercept, respectively. Resolution, enantioselectivity, distribution coefficients and Gibb's free energy were also calculated, as well as between enantiomer differences in enthalpy, entropy and Gibb's free energy. Finally, comparisons were made between the microemulsion thermodynamic data and a corresponding set of micellar data. While the 4% DDCV microemulsion did not provide a linear van't Hoff relationship, the 1% DDCV microemulsion was linear over a temperature range of 15-30 degrees C. For the 1% DDCV microemulsion, the enthalpic contribution to retention was consistently favorable (deltaH < 0), whereas the entropic contribution varied from compound to compound. Finally, while the achiral attraction of the analytes was greater for the micellar phase, the microemulsion seemed to provide a suitable difference in entropy (and Gibb's free energy) between enantiomers to achieve chiral discrimination.  相似文献   

12.
Mertzman MD  Foley JP 《Electrophoresis》2004,25(9):1188-1200
Cyclodextrin (CD)-modified microemulsion electrokinetic chromatography (MEEKC) or CD-MEEKC has not previously been applied to the area of chiral separations. Herein, the results of investigations of various microemulsions with CD additives are presented. Two different microemulsions are explored: an ethyl acetate sodium dodecyl sulfate microemulsion, and a chiral dodecoxycarbonylvaline (DDCV) microemulsion. Each microemulsion is paired separately with a neutral CD (hydroxypropyl-beta-CD) and an anionic CD (sulfated-beta-CD). In addition, the chiral DDCV microemulsion is investigated in both the R- and S- form. By varying simple parameters such as buffer system, applied voltage, surfactant enantiomer, and type of cyclodextrin, dramatic improvements in the chiral separations were noted. Resolution was found to be highly dependent on buffer identity and concentration, and somewhat dependent on whether the CDs used were randomly or highly sulfated. Under optimized conditions, the resolution ranged from 0.8 to 4.8, with plate counts ranging from 4000 to 26 000. Additionally, S- and R-levetiracetam, which had never before been enantioseparated via capillary electrophoresis (CE) methodologies, were separated in less than 8 min, with a resolution of 1.1.  相似文献   

13.
Summary The separation of (1R, 2S) and (1S, 2R)-ephedrine using microemulsion electrokinetic capillary chromatography is reported. The lipophilic chiral selector, (2R, 3R)-di-n-butyl tartrate (0.5% w/w), was introduced into the electrophoretic buffer consisting of 0.6% (w/w) sodium dodecyl sulfate (SDS) and 1.2% (w/w) 1-butanol in 15 mM tris-hydroxyaminomethane buffer (pH 8.1). The two isomers of ephedrine were separated with excellent resolution.  相似文献   

14.
Recent applications of microemulsion electrokinetic chromatography   总被引:1,自引:0,他引:1  
Huie CW 《Electrophoresis》2006,27(1):60-75
Compared to MEKC, the presence of a water-immiscible oil phase in the microemulsion droplets of microemulsion EKC (MEEKC) gives rise to some special properties, such as enhanced solubilization capacity and enlarged migration window, which could allow for the improved separation of various hydrophobic and hydrophilic compounds, with reduced sample pretreatment steps, unique selectivities and/or higher efficiencies. Typically, stable and optically clear oil-in-water microemulsions containing a surfactant (SDS), oil (octane or heptane), and cosurfactant (1-butanol) in phosphate buffer are employed as separation media in conventional MEEKC. However, in recent years, the applicability of reverse MEEKC (water-in-oil microemulsions) has also been demonstrated, such as for the enhanced separation of highly hydrophobic substances. Also, during the past few years, the development and application of MEEKC for the separation of chiral molecules has been expanded, based on the use of enantioselective microemulsions that contained a chiral surfactant or chiral alcohol. On the other hand, the application of MEEKC for the characterization of the lipophilicity of chemical substances remains an active and important area of research, such as the use of multiplex MEEKC for the high-throughput determination of partition coefficients (log P values) of pharmaceutical compounds. In this review, recent applications of MEEKC (covering the period from 2003 to 2005) are reported. Emphases are placed on the discussion of MEEKC in the separation of chiral molecules and highly hydrophobic substances, as well as in the determination of partition coefficients, followed by a survey of recent applications of MEEKC in the analysis of pharmaceuticals, cosmetics and health-care products, biological and environmental compounds, plant materials, and foods.  相似文献   

15.
Kinetic resolution of acyclic secondary allylic silyl ethers by chiral dioxiranes generated in situ from chiral ketones (R)-1 and (R)-2 and Oxone was investigated. An efficient and catalytic method has been developed for kinetic resolution of those substrates with a CCl(3), tert-butyl, or CF(3) group at the alpha-position. In particular, high selectivities (S up to 100) were observed for kinetic resolutions of racemic alpha-trichloromethyl allylic silyl ethers 7 and 9-15 catalyzed by ketones (R)-2. Both the recovered substrates and the resulting epoxides were obtained in high enantiomeric excess. On the basis of steric and electrostatic interactions between the chiral dioxiranes and the racemic substrates, a model was proposed to rationalize the enantioselectivities and diastereoselectivities in the chiral ketone-catalyzed kinetic resolution process.  相似文献   

16.
17.
Zheng ZX  Lin JM  Chan WH  Lee AW  Huie CW 《Electrophoresis》2004,25(18-19):3263-3269
A novel chiral microemulsion, which involved the use of chiral alcohols as cosurfactants, was demonstrated for the enantiomeric separation of a number of pharmaceutical drugs in microemulsion electrokinetic chromatography (MEEKC). The chiral alcohols investigated were optically active 2-alkanols, with the alkyl chain length having carbon number ranging from 4 to 7. The data indicated that, except for R-(-)-2-butanol, the use of R-(-)-2-pentanol, R-(-)-2-hexanol or R-(-)-2-heptanol as the chiral cosurfactant resulted in the baseline or partial resolution of most of the test solutes, i.e., (+/-)-norephedrine, (+/-)-ephedrine, DL-nadolol, and DL-propranolol. In addition to the chain length of the chiral 2-alkanols, the effects of other experimental conditions, such as the concentration and chirality of the 2-alkanols, as well as the pH of the run buffer and the oil phase of the microemulsion, on the enantiomeric separation of the test solutes were also investigated. An interesting finding was that the water-immiscible organic solvent (oil core) within the microemulsion droplets appeared to play an important role in the chiral separation mechanism. Also, the importance of hydrogen bonding between the test solutes ((+/-)-ephedrine and related compounds) and the chiral microemulsion was demonstrated, as it was not possible to resolve a pair of enantiomers which lacked a beta-amino proton (i.e., (+/-)-N-methyl ephedrine) under optimized run buffer conditions (e.g., 5.0% R-(-)-2-hexanol, 0.8% n-octane, and 3.5% SDS in 90.7% borate buffer at pH 9.2).  相似文献   

18.
Kahle KA  Foley JP 《Electrophoresis》2006,27(21):4321-4333
The effect of cosurfactant identity on microemulsion size, elution range, retention factor, enantioselectivity, methylene selectivity, efficiency, and resolution in chiral microemulsion formulations was examined. The chiral surfactant dodecoxycarbonylvaline was used in conjunction with the cosurfactants 1-butanol, 1-pentanol, 2-pentanol, 1-hexanol, 2-hexanol, cyclopentanol, and cyclohexanol. The millimolar concentration of cosurfactant was held constant regardless of identity. Ethyl acetate was incorporated as the microemulsion oil core and the buffer utilized was 50 mM phosphate at a pH of 7.0. In general, secondary alcohols improved enantioselectivities and primary alcohols had the opposite effect, with the exception of the 1-butanol. The trends observed varied slightly depending on analyte. Of the six chiral analytes tested, cyclopentanol provided the best enantioselectivity for three, 1-butanol for two compounds, and 2-pentanol for one analyte. The lowest enantioselectivities were achieved with 1-pentanol or 1-hexanol for all compounds. Methylene selectivity was found to decrease with reductions in alcohol chain length. Among equal carbon number alcohols, methylene selectivity was lower for secondary alcohols. Efficiency and resolution values varied with different cosurfactants and depended on analyte identity.  相似文献   

19.
The enantiomeric separation of basic drugs was successfully demonstrated by using a novel chiral microemulsion electrokinetic chromatography (MEEKC). An interesting finding was that the chiral oil core ((S)-(+)-2-octanol) within the microemulsion droplets appeared to play an important role in the chiral separation mechanism. In addition, the enantioselectivity of the analyte-selector complex could be influenced by methanol, through an interaction with the complex. The chiral resolution (R(s)) and partition coefficient were strongly influenced by the concentration of methanol, pH, the concentration of chiral oil and the concentration of a cosurfactant. Under the optimized microemulsion conditions, the baseline separation of (+/-)-ephedrine (R(s) = 2.7), and the partial separations of (+/-)-norephedrine (R(s) = 1.3), (+/-)-synephrine (R(s) = 1.4) and (+/-)-propranolol (R(s) = 1.3), could be achieved.  相似文献   

20.
Several racemic acidic compounds of pharmaceutical and environmental interest have been separated into their enantiomers by nano-liquid chromatography (nano-LC) employing a tert-butylbenzoylated tartardiamide chiral stationary phase (CHI-TBB). CHI-TBB was packed into a fused silica capillary of 100 microm id and retained by two frits made with a heated wire; detection was on-column at a window (about 0.5 cm) prepared by removing the polyimide layer. The normal phase mode was selected for eluting the studied acidic compounds and therefore n-hexane/2-propanol/acetic acid (89/10/1, v/v/v) was used as mobile phase. Working at a flow rate of 220 nL/min a good resolution was obtained for mecoprop, dichlorprop, diclofop, fenoxaprop (herbicides) and for DF 1738Y, DF 1770Y, DF 2008Y (drugs under evaluation). In order to optimize the chiral resolution we modified the polarity of the mobile phase by adding several polar additives such as ethyl acetate, dichloromethane, tert-butyl methyl ether. Better results were obtained for some herbicides on working with 2-propanol/CH2Cl2/n-hexane/acetic acid (8/4/87/1, v/v/v/v). The influence of the capillary temperature on chiral resolution was studied for two herbicides with different chemical structures, namely mecoprop and haloxyfop in the temperature range between 10 and 40 degrees C and with n-hexane/2-propanol/1% acetic acid (89/10/1, v/v/v) as the mobile phase. Linear correlation of ln k vs 1/T and In alpha vs 1/ T was observed; deltaH degrees values were negative, demonstrating that retention of analytes was an exothermic process. A decrease in resolution was observed with rising temperature, showing that enantioresolution was mainly influenced by selectivity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号