首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the polyethylene glycol and/or beta-cyclodextrin on the photolability of aqueous solutions of the anti-inflammatory drug Naproxen was studied. In all systems studied, the photodegradation process followed zero-order kinetics, leading to the same photoproducts as in the absence of these additives. Kinetic studies revealed that the presence of polyethylene glycol (PEG) reduced drug photodegradation (phi=0.11 in water and phi=0.045 in the presence of 1% of PEG). By contrast, the binary inclusion complex, Naproxen:beta-CD, did not protect the drug from degradation, phi=0.11. However, the ternary complex, Naproxen:beta-CD:PEG, reduced the efficiency of the photodegradative process to a considerable extent, with phi=0.022 in this system. In all cases the presence of the different additives elicited a change in the photomixture composition, the alcoholic derivative being the major photoproduct formed. Nevertheless, the change in the efficiency of the process and the amount of the photoproducts formed in the different systems were not related with the biodamage produced by the drug. In this sense, the presence of free Naproxen clearly sensitized the photoperoxidation of linoleic acid. The photosensitizing effect decreased as the PEG concentration increased and was completely abolished by both the binary (Naproxen:beta-CD) and ternary (Naproxen:beta-CD:PEG) complexes. In light of these observations, it is possible to speculate that in these systems the prevention of biodamage would be due to a decrease in the contact between the short-lived species generated during Naproxen photodegradation and biological structures, rather than to the nature or amount of the photoproducts.  相似文献   

2.
The inclusion complex of salbutamol and beta-cyclodextrin (beta-CD) is studied by computational (MM2 and PM3) and experimental techniques. Molecular modeling calculations predict two different orientations of salbutamol in the beta-CD cavity in vacuo and in aqueous solution. In vacuo calculations show that the introduction of the aromatic ring of salbutamol is preferred to the introduction of the tert-butyl group into the beta-CD cavity. However, in aqueous solution both computational methods predict the introduction of the alkyl chain instead of the aromatic ring in the beta-CD cavity contrary to experimental results published previously. These quantitative predictions were experimentally confirmed here by studying the inclusion complex in solution by NMR. A 1:1 stoichiometry was found by (1)H NMR studies for this complex. A 2D ROESY (rotating-frame Overhauser enhancement spectroscopy) experiment shows that there are no cross-peaks between the aromatic protons of salbutamol and any of the protons of beta-CD. Cross-peaks for the protons of the tert-butyl group and protons inside the cavity of beta-CD demonstrate the full involvement of this group in the complexation process and confirm the orientation of the complex predicted by molecular modeling. The solid-state complex was prepared and its stoichiometry (beta-CD.C(13)H(21)NO(3).8H(2)O) and dissociation process studied by thermogravimetric analysis.  相似文献   

3.
A single ultrasonic relaxational phenomenon was observed in aqueous solutions containing both beta-cyclodextrin (beta-CD) as host and nonionized or ionized acetylsalicylic acid (aspirin) as guest. The observed relaxation was responsible for a dynamic complexation reaction between beta-CD and aspirin molecules, concomitant with a volume change during the reaction. The kinetic and equilibrium constants for the complexation in the acid (nonionized) form of the aspirin system were derived from the guest concentration dependence of the relaxation frequency. The equilibrium constant for the carboxylate (ionized) form of aspirin was determined from the concentration dependence of a maximum absorption per wavelength, and the rate constants were calculated by using the determined equilibrium constant and the observed relaxation frequencies, which remained nearly almost constant over the concentration range studied. The results showed that the effect of charge on the aspirin molecule was reflected only in the dissociation process from the beta-CD cavity, while no remarkable change was seen in the association process whose rate was diffusion controlled. The results could be explained on the basis of the difference of the hydrophobic moieties in the two guests that were included in the host cavity. The results of the standard volume change for the complexation reaction were closely related to the number of expelled water molecules originally located in the beta-CD cavity and the volume of the aspirin molecule incorporated into the beta-CD cavity.  相似文献   

4.
The interaction of progesterone with beta-cyclodextrin (beta-CD) was studied by differential pulse polarography. The aim of the present work was to study the effect of beta-CD on the electrochemical behavior of progesterone in aqueous solution and also to analyze the molecular interactions involved in formation of the inclusion complex. The complex with stoichiometry of 1:1 was thermodynamically characterized. In addition, steered molecular dynamics (SMD) was used to investigate the energetic properties of formation of the inclusion complex along four different pathways (reaction coordinates), considering two possible orientations. From multiple trajectories along these pathways, the potentials of mean force for formation of the beta-CD progesterone inclusion complex were calculated. The energy analysis was in good agreement with the experimental results. In the beta-CD progesterone inclusion complex, a large portion of the steroid skeleton is included in the beta-CD cavity. The lowest energy was found when the D-ring of the guest molecule is located near the secondary hydroxyls of the beta-CD cavity. In the most probable orientation, one intermolecular hydrogen bond is formed between the O of the C-20 keto group of the progesterone and a secondary hydroxyl of the beta-CD.  相似文献   

5.
Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.  相似文献   

6.
The absorption and fluorescence spectral characteristics of 4-hydroxy-3-methoxybenzaldehyde (HMB) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with 4-hydroxy-3,5-dimethoxybenzaldehyde (HDMB). The inclusion complex of HMB with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, SEM and AM1 methods. In HMB, the normal emission (B band) is originates from a locally excited state and the longer emission (A band) is due to intramolecular charge transfer state (ICT). The OH group of HMB is present in the interior part of the beta-CD cavity and aldehyde group present in the upper part of the beta-CD cavity.  相似文献   

7.
Gel sequencing experiments with the 5'- and 3'-end-labeled oligonucleotides d(A3GA4GA5GA6GA3G) and d(AT) 10 have demonstrated that dimeric adenine photoproducts and thymine-adenine photoadducts constitute alkali-labile lesions in UV-irradiated DNA. On treatment with hot piperidine, DNA strand breakage occurs predominantly at the sites of 5'-adenines in the dimeric photoproducts and of 3'-adenines in the thymine-adenine photoadducts. With 5'-end-labeled oligonucleotides of mixed sequence, major UV-induced loci for alkaline cleavage map to purine bases flanked on their 5'-side by two pyrimidines. This behavior does not arise from enhanced photoreactivity of purines in this sequence context as has been inferred from photofootprinting studies. Instead, as shown by 3'-labeling and selective substitution with 5-methylcytosine, it results from the anomalous electrophoretic mobility of 5'-end-labeled fragments produced by alkaline cleavage of DNA at adjacent pyrimidine (6-4) pyrimidone photoproducts.  相似文献   

8.
The effects of beta-cyclodextrin complexation on the photochemical and photosensitizing properties of tolmetin have been investigated. Absorption, emission, circular dichroism and NMR measurements were used to characterize the host-guest complex. Nanosecond laser flash photolysis and steady-state photolysis experiments were performed to clarify the photoreactivity of the drug in the macrocycle. The decarboxylation of the drug is markedly reduced upon inclusion and the rate constants of the decay of the transient intermediates involved in tolmetin photodecomposition were slowed down due to their incorporation in the hydrophobic cavity. This also influenced the distribution of the stable photoproducts. A remarkable cyclodextrin-mediated protection against the tolmetin-photoinduced damage on biological substrates was observed. A rationale for these biological effects is provided.  相似文献   

9.
Poly-pseudo-rotaxanes CDs contains as a subset 1 (CDs; cyclodextrins, 1; poly(delta-valerolactone) having single beta-CD at the end of the polymer chain) initiate polymerization of delta-valerolactone (delta-VL) in the solid state when CDs (alpha-CD, beta-CD, and 2,6-di-O-methyl-beta-CD) are threaded onto the polymer chain. 1 without threaded CDs did not show any polymerization ability for delta-VL. An adamantane molecule (Ad) inhibited the polymerization ability of CDs contains as a subset 1 for delta-VL, indicating that beta-CD at the end of CDs contains as a subset 1 could not bind delta-VL because the beta-CD cavity was occupied by Ad. It should be noted that the insertion reaction and the polymerization took place inside the beta-CD cavity at the end of CDs contains as a subset 1 and that the formation of poly-pseudo-rotaxane is necessary for the initiation of delta-VL. The structures of beta-CD contains as a subset 1 and 1 were characterized by powder X-ray diffraction measurements and solid-state NMR spectroscopies. The polymer chain of beta-CD contains as a subset 1 was found to elongate in the solid state, whereas the polymer chain of 1 formed a random coil conformation. 1 was deactivated for the polymerization by blocking the active cavity of beta-CD with the polymer chain. CDs threaded onto 1 are immune to the initiation of delta-VL directly but have an essential role to fold the polymer chain in a proper way as an artificial chaperone.  相似文献   

10.
The nitrobenzofurazan (NBD) moiety has gained tremendous popularity over the last decades due to its fluorogenic nature. Indeed, upon interaction with aliphatic amines, it generates a stable fluorescent adduct, which has been used for protein and lipid labeling. In fact the 4‐amino substituted NBD belongs to the broad family of intramolecular charge transfer molecules, with the amino group acting as an electron donor upon photoexcitation, and the nitro group as an electron acceptor. Although the singlet excited state of 4‐amino NBD derivatives has been abundantly studied, investigation of its triplet manifold is scarce and even the absence of intersystem crossing for this type of molecules has been suggested. However, intramolecular charge transfer molecules are known to undergo intersystem crossing and high phosphorescence quantum yields have been reported in a nonpolar solvent. In the present paper, we have investigated the photophysical and photochemical properties of N‐hexyl‐7‐nitrobenzo[c][1,2,5]xadiazole‐4‐amine. We have shown the existence of a triplet state for this molecule in cyclohexane via nanosecond laser flash photolysis. Interestingly, deactivation of the triplet state leads to photoproducts formation, which are only present in the absence of oxygen.  相似文献   

11.
The ability of beta-cyclodextrin (beta-CD), sulfurbutylether-beta-CD (SBE-beta-CD) and hydroxypropyl-beta-CD (HP-beta-CD) to break the aggregate of the meso-Tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) and to form 2:1 inclusion complexes has been studied by adsorption and fluorescence spectroscopy. The formation constants are calculated, respectively by fluoremetry, from which the inclusion capacity of different CDs is compared and the inclusion mechanism of charged-beta-CD (SBE-beta-CD) is quite different from that of parent beta-CD. At lower pH, the complexation between HP-beta-CD and H2TPPS(2+)4 (the form of the diprotonated TPPS4) hampers the continuous protonation of the pyrrole nitrogen of TPPS4 and the hydrophobic cavity may prefer to bind an apolar neutral porphyrin molecule. 1HNMR data support the inclusion conformation of the porphyrin-cyclodextrin supramolecular system, indicating the interaction of meso-phenyl groups of TPPS4 with the cavity of CDs. For this host-guest inclusion model, cyclodextrin, being regarded as the protein component, which acts as a carrier enveloping the active site of heme prosthetic group within its hydrophobic environment, provides a protective sheath for porphyrin, creating artificial analogues of heme-containing proteins. However, the TPPS4, encapsulated within this saccharide-coated barrier, its physico-chemical, photophysical and photochemical properties changed strongly.  相似文献   

12.
The binding of polyethylene glycol (10) n-octylphenyl ether (OPE) and polyethylene glycol (10) tert-octylphenyl ether (Triton X-100, TX) to beta-cyclodextrin (beta-CD) and heptakis(2,3- beta-dimethyl)- beta-CD (DM- beta-CD) was described in detail by surface tension, steady-state fluorescence of OPE and TX, and phosphorescence of 1-bromonaphthalene (BN) probe. Surface tension and fluorescence measurements show that beta-CD entraps the hydrophobic moieties of OPE and TX to form inclusion complexes with the stoichiometry of 1:1. Unlike the n-octyl group of OPE, however, the tert-octyl group of TX fails to be encapsulated into the cavity of DM- beta-CD because of the steric hindrance of methyl groups at the rim of the cavity. The inclusion of the phenyl group of OPE and TX was demonstrated by dynamic quenching effect of iodide ion on fluorescence of OPE and TX in the presence of beta-CD. Static fluorescence quenching of OPE and TX by BN, phosphorescence of BN, and energy transfer between TX and BN provide additional evidence for the inclusion of their phenyl groups into the CD cavity. Analyses of molecular size suggest that the longer tert-octyl group of OPE is situated in curled manner in the cavity and the tert-octyl group of TX undergo a slight distortion for fit of beta-CD. Further introduction of the third guest component into the CD cavity occupied by OPE and TX will force the flexible octyl groups of OPE and TX to deform to a greater extent.  相似文献   

13.
Methylation of cytosine is a common biological process both in prokaryotic and eukaryotic cells. In addition to 5‐methylcytosine (5mC), some bacterial species contain in their genome N4methylcytosine (N4mC). Methylation at C5 has been shown to enhance the formation of pyrimidine dimeric photoproducts but nothing is known of the effect of N4 methylation on UV‐induced DNA damage. In the present work, we compared the yield and the nature of bipyrimidine photoproducts induced in a series of trinucleotides exhibiting a TXG sequence where X is either T, C, 5mC or N4mC. HPLC associated to tandem mass spectrometry was used to quantify cyclobutane pyrimidine dimers (CPD), (6‐4) photoproducts (64PP) and their Dewar valence isomer. Methylation at position N4 was found to drastically increase the reactivity of C upon exposure to both UVC and UVB and to favor the formation of 64PP. In contrast methylation at C5 increased the yield of CPD at the expense of 64PP. In addition, enhancement of photoreactivity by C5 methylation was much higher in the UVB than in the UVC range. These results show the drastic effect of the methylation site on the photochemistry of cytosine.  相似文献   

14.
A structural study of the inclusion compound of tolbutamide (TBM) with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was attempted by means of 1H-nuclear magnetic resonance (1H-NMR) experiments and computer molecular modelling. To establish the stoichiometry and stability constant of the beta-CD:TBM complex, the continuous variation method was used. The presence of true inclusion complexes between TBM and beta-CD or HP-beta-CD in solution was clearly evidenced by the 1H-NMR technique. Changes in chemical shifts of H-3 and H-5 protons, located inside the CD cavity, associated with variations in the chemical shifts of TBM aromatic protons provided clear evidence of inclusion complexation, suggesting that the phenyl moiety of the drug molecule was included in the hydrophobic cavity of CDs. This view was further supported by the observation of intermolecular NOEs between TBM and beta-CD and by the aid of a molecular modelling program, which established the most probable structure of the complex. The molecular graphic computation confirmed that the minimum energy, positioning TBM relative to beta-CD, occurs when the aromatic ring of TBM is included within the beta-CD cavity by its wider side, leaving the aliphatic chain externally, which is in good agreement with the results of 1H-NMR studies.  相似文献   

15.
Ultrasonic absorption coefficients in the frequency range of 0.8-95 MHz were measured in aqueous solutions containing both beta-cyclodextrin (beta-CD) (host) and butanoic acid (in its dissociated form and undissociated one) (guest). A single relaxational phenomenon was observed only when the solutes were coexisting, although no relaxation was found in the beta-CD solution or in the acid solutions. The absorption was also measured in a solution of pentanoic acid (dissociated form) with beta-CD, and single relaxation was detected. The ultrasonic relaxation observed in these solutions was due to a perturbation of a chemical equilibrium related to a reaction of an inclusion complex formed by the host and guest. The equilibrium constant was obtained from the dependence of the maximum absorption per wavelength on the guest concentration. The rate constant for the inclusion process of the guest into a cavity of beta-CD and that for the leaving process from the cavity were determined from the obtained relaxation frequency and the equilibrium constant. The standard volume change of the reaction was also computed from the maximum absorption per wavelength. These results were compared with those in solutions containing both beta-CD and different guest molecules. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex and also that the charge on the carboxylic group had a considerable effect on the kinetic characteristics of the complexation reaction.  相似文献   

16.
The influence of denaturation on DNA photochemistry was studied by quantifying the yield of formation of all possible bipyrimidine photolesions within isolated genomic DNA samples exposed to UVC radiation. Effects of DNA melting was studied either by carrying out irradiation over a wide range of temperature (0-90 degrees C) or by decreasing the ionic strength of the solution at 30 degrees C. A first observation was a much larger decrease in the photoreactivity upon increasing the temperature in single-stranded than in double-stranded DNA. Secondly, formation of trans,syn cyclobutane dimers and, to a lesser extent, modification in the ratio between the yields of cyclobutane dimers and (6-4) photoproducts, were found to be other main features associated with denaturation. These results emphasize the modulating role of structure in the yield and nature of UV-induced DNA damage.  相似文献   

17.
This paper reports the structure and dynamics of a twisted intermolecular charge transfer molecule 2-(4-(dimethylamino) styryl)-1-methylpyridinium iodide (o-DASPMI) included inside alpha-, beta- and gamma-cyclodextrin, investigated by using steady state and time-resolved emission spectroscopy and also theoretical modeling. A nice 1 : 1 inclusion complex with beta-CD in the excited state could be found with the dimethylamino group of the molecule sticking out as revealed from steady state and time-resolved emission. The inclusion complex has a longer decay time compared to that in neat water. Time-resolved anisotropy decay has been used to study the rotational dynamics of the molecule inside cyclodextrin cavity. The average angular structure of the inclusion complex as found from semiempirical PM3 calculations corroborates excellently the experimental results of angular orientation in beta-CD. The minimum energy of the complex is found to be nearly 5 A in the length of the molecule with the dimethylamino part sticking out in the bulk water. Hydrogen bonding at the rim hinders the inclusion complex of o-DASPMI in gamma-CD and instead it produces association at the rim. Hydrogen bond breaker urea breaks the bonding of o-DASPMI with the rim of gamma-CD and the formation of inclusion complex with gamma-CD ensues.  相似文献   

18.
The molecular structure and dynamics of novel inclusion compounds (ICs) consisting of n-perfluoroalkane (PFA) guests and beta-cyclodextrin (beta-CD) host (PFA/beta-CD) have been investigated using 19F magic angle spinning (MAS) and 1H-->19F cross polarization (CP)/MAS NMR spectroscopy with the aid of thermal analyses, FT-IR spectroscopy, and X-ray diffraction method. The ICs of C9F20/beta-CD and C20F42/beta-CD were successfully obtained as precipitates from mixtures of respective PFAs and saturated aqueous solution of beta-CD. The wide-angle X-ray diffraction (WAXD) revealed that C9F20/beta-CD forms a channel-type crystallite, while C20F42/beta-CD is nearly amorphous at room temperature. The structural orders in both ICs increase at elevated temperatures. The 19F NMR signals obtained by the direct polarization (DP) method for PFA/beta-CD are resonated at higher frequencies than those for original PFA. This can be ascribed to the lower dielectric environment of the beta-CD cavity. Above 80 degrees C, 1H-->19F CP/MAS NMR technique revealed that C9F20 molecules undergo vigorous molecular motion and partly come out of the beta-CD channel. However, the guests hardly degrade or evaporate unless the host is pyrolytically decomposed above ca. 300 degrees C. The spin-lattice relaxation times in the laboratory frame for 19F (T1F) are almost identical for all the fluorines in PFA/beta-CD at each temperature, while significantly different values were observed for fluorines in neat PFA. This indicates that effective intramolecular spin diffusion occurs within a PFA molecule included in beta-CD.  相似文献   

19.
Since the beta-cyclodextrin cavity is not a smooth cone but has constrictions in the neighborhoods of the H3 and H5 atoms, the hypothesis that bulky hydrophobic guests can form two isomeric inclusion complexes (one of them, c(p), is formed by the entrance of the guest by the primary side of the cavity, and the other one, c(s), results from the entrance by the secondary side) is checked. Thus, the inclusion processes of two 1-substituted adamantyl derivatives (rimantidine and adamantylmethanol) with beta-cyclodextrin and its two monoamino derivatives at positions 6 (6-NH2beta-CD) and 3 (3-NH2beta-CD) were studied. From rotating-frame Overhauser enhancement spectroscopy experiments, it was deduced that both guests form c(s) complexes with beta-CD and 6-NH2beta-CD but c(p) complexes with 3-NH2beta-CD. In all cases, the hydrophilic group attached to the adamantyl residue protrudes toward the bulk solvent outside the cyclodextrin cavity. The thermodynamic parameters (free energy, equilibrium constant, enthalpy, and entropy) associated with the inclusion phenomena were measured by isothermal titration calorimetry experiments. From these results, the difference in the free energy for the formation of the two complexes, c(s) and c(p), for the same host/guest system has been estimated as being 11.5 +/- 0.8 kJ mol(-1). This large difference explains why under normal experimental conditions only one of the two complexes (c(s)) is detected. It is also concluded that a hyperboloid of revolution can be a better schematic picture to represent the actual geometry of the cyclodextrin cavities than the usual smooth cone or trapezium.  相似文献   

20.
Anchoring of functionalized guest molecules to self-assembled monolayers (SAMs) is key to the development of molecular printboards for nanopatterning. One very promising system involves guest binding to immobilized beta-cyclodextrin (beta-CD) hosts, with guest:host recognition facilitated by a hydrophobic interaction between uncharged anchor groups on the guest molecule and beta-CD hosts self-assembled at gold surfaces. We use molecular dynamics free energy (MDFE) simulations to describe the specificity of guest:beta-CD association. We find good agreement with experimental thermodynamic measurements for binding enthalpy differences between three commonly used phenyl guests: benzene, toluene, and t-butylbenzene. van der Waals interaction with the inside of the host cavity accounts for almost all of the net stabilization of the larger phenyl guests in beta-CD. Partial and full methylation of the secondary rim of beta-CD decreases host rigidity and significantly impairs binding of both phenyl and larger adamantane guest molecules. The beta-CD cavity is also very intolerant of guest charging, penalizing the oxidized state of ferrocene by at least 7 kcal/mol. beta-CD hence expresses moderate specificity toward uncharged organic guest molecules by van der Waals recognition, with a much higher specificity calculated for electrostatic recognition of organometallic guests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号