首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel chiral macrocycles consisting of two rigid oligoarylene rods and two chiral spiroindane clips have been synthesized by condensation of spiroindane diols and CF3-activated alpha-omega-difluorooligoaryls. Since a broad variety of planar aromatic macrocycles is known, our non-planar, chiral rings represent a new class of macrocyclic compounds. The first two examples, which contain quaterphenylene and diphenylbithiophene rods, are presented in this communication; for one of them a crystal structure is given. The chiroptical properties of the macrocycles can be interpreted as an interplay of the "intra-rod" helicity of individual oligoarylene rods and the "inter-rod" helicity between both chromophores of the macrocycle. The macrocycles can act as chiral dopands of commercially available, and novel, polymeric nematic liquid crystals (emissive polyfluorenes). The "intra-rod" helicity of individual oligoarylene rods is the main feature in determining the resulting helical twisting power (HTP). The cholestric induction in mesogenic, emissive polyfluorenes is of special interest for a realization of electronic devices that have a circularly polarized electroluminescence. The results are also important for an understanding of larger ensembles of chiral rodlike molecules, especially their pi-pi interactions.  相似文献   

2.
Procedures were developed for functionalization of macrocycles by introducing a phosphonic group either directly linked to the aromatic rings (in the case of cyclophanes or calixarenes) or as a pendant arm. For these compounds to be used as artificial receptors for amino alcohols and amino acids, the host molecule must possess not only negative charges arising from the phosphonate moieties but also a hydrophobic binding site, such as electron-rich aromatic residues. We designed inter alia new dissymmetric macrocycles capable of being involved in three binding modes with guest molecules, viz., hydrogen bonding, electrostatic attraction, and π-cation interactions. The NMR characterization of the macrocycles, their stereochemistry in solution and in the solid state, and the use as chiral receptors for biologically relevant molecules are described. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1313–1330, June, 2005.  相似文献   

3.
We have recently reported the synthesis of new chiral macrocyclic polyhydroxyethers by reduction of cyclodextrins 1. These compounds display appreciable conformational freedom in solution as it occurs with the ionophores. Our chiral macrocycles may be considered as built by units of alditol (1 → 4) alditols. Such units, conveniently substituted, prepared by us by reduction of disaccharide derivatives2, are possible synthons for the synthesis of other macrocyclic polyhydroxyethers in which the nature and number of alditol (1 → n) alditol components can be varied at will. We are interested in the preparation and the structural studies of these type of receptors since the synthesis of new chiral macrocycles is a topic of interest and the building of chiral cavities may be of importance in the study of host-guest interactions. We now report on the preparation, from D-mannitol, a readily available starting material with C2symmetry, and tetraethylene glycol, of the chiral macrocycles 1, 2, and 3, as model compounds in exploring the synthesis of more complex macrocyclic polyhydroxyethers derived from alditol (1 → n) alditol. Other macrocyclic compounds from D mannitol have been previously synthesised.  相似文献   

4.
Five new chiral macrocycles, 3a-e, have been prepared by the acylation cyclization of chiral diamine dihydrobromide intermediates 2a-c with 2,6-pyridinedicarbonyl dichloride in highly diluted solution at room temperature. The chiral diesters 1a-c needed for the preparation of the macrocycles were obtained from condensation of corresponding N-(Z)-L-amino acids and 2,6-bishydroxymethyl pyridine in the presence of DCC and DMAP. The enantiomeric recognition of chiral macrocycles 3a-e for D- and L-amino acid methyl ester hydrochlorides has been characterized by fluorescence spectra, which indicate that some of them exhibited significant chiral recognition for the enantiomers of D- and L-amino acid methyl ester hydrochlorides. The stoichiometry and binding constants of 3a-L-Am(2) and 3c-L-Am(2) complexes have been determined. An X-ray analysis of the chiral macrocycle 3b show that the chiral ligand is rather rigid and strained.  相似文献   

5.
Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs-based macrocycles due to a low racemization barrier for isomerization. Herein, we report the precise synthesis and tuning size-dependent (chir)optical properties of a new class of chiral PAHs-containing conjugated macrocycles (cyclo[n]paraphenylene-2,6-anthrylene, [n]CPPAn2,6 ; n=6–8). Their inherent chiralities were squeezed out in small anthrylene-based macrocycles. Efficient resolutions for chiral enantiomers with (P)/(M)-helicity of small [6-7]CPPAn s were achieved by HPLC. Interestingly, these macrocycles showed enriched size-dependent physical, chiral, and (chir)optical properties. Theoretical calculations indicate that these macrocycles have high strain energy (Estrain=60.8 to 73.4 kcal/mol) and very small Egap (∼3.0 eV). Notably, these enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs| and |glum|∼0.01 for an enantiomer of [6]CPPAn2,6 ), which can give them potential applications in optically active materials.  相似文献   

6.
Ionophores, whether of natural or synthetic origin, encapsulate their ionic “guests” using noncovalent bonding. This encapsulation process resembles, at least superficially, the bonding of a substrate by an enzyme-active site. The analogy to enzymes can be extended further if the ionophore is provided with functional groups that can react with a suitable guest molecule bound in the cavity of the ionophore. We have embedded in the periphery of a macrocycle a 1,4-dihydropyridine, a mimic of the coenzyme NADH. The macrocycle, in addition to having (weak) ionophoric properties, is chiral. The strategy has led to compounds that react as artificial hydrogenases and which are capable of distinguishing, in a predictable fashion, between the prochiral faces of suitable carbonyl substrates. Ancillary developments from this approach have been many. A remarkably general method for the preparation of a wide variety of macrocycles has been developed which depends on some remarkable chemical idiosyncrasies of the cesium ion. In attempts to exploit the chemical possibilities of these macrocycles, unusual chemistry, possibly relevant to the action of the enzyme, 3-phosphoglyceraldehyde dehydrogenase, has been uncovered. In a similar vein, study of macrocycles has led to variants of the aldol condensation on chiral templates. Finally, catalytic CC bond formation mediated by transition metals is revealed to be an area in which chiral macrocycles can play a useful role by acting as chiral ligands for the transition metal.  相似文献   

7.
Macrocyclic nitrogen-containing compounds are versatile molecules. Supramolecular, noncovalent interactions of these macrocycles with guest molecules enables them to act as catalysts, fluorescent sensors, chiral or nonchiral selectors, or receptors of small molecules. In the solid state, they often display a propensity to form inclusion compounds. All of these properties are usually closely connected with the presence of nitrogen atoms in the macrocyclic ring. As most of the reviews published so far on macrocycles were written from the viewpoint of functional groups, synthetic methods, or the structure, search methods for literature reports in terms of the physicochemical properties of these compounds may be unobvious. In this minireview, the emphasis was put on the synthesis and applications of nitrogen-containing macrocyclic compounds, as they differ from their acyclic analogs, and at the same time are the driving force for further research.  相似文献   

8.
Chiral synthetic macrocyclic receptors that can achieve chiral discrimination by NMR spectroscopy and/or chiral separation by HPLC are overviewed. Synthetic macrocycles introduced here include crown ethers, calixarenes/calixresorcinarenes/calixpyrroles, macrocyclic amides/amines, and porphyrins. These macrocyclic frameworks are advantageous because intermolecular interactions can take place effectively, such as the ion–dipole interactions in crown ethers, the CH/π and π–π interactions in calixarenes, hydrogen bonding and salt formation in macrocyclic amides and amines, and π–π stacking and metal coordination in porphyrins. Additional functional groups on the periphery of the macrocyclic platforms not only make the whole molecule chiral but also act as the interaction sites. Chiral macrocyclic receptors can show a high degree of chiral recognition/discrimination by using the peripheral functional groups as well as the macrocyclic skeletons (preorganization). Both hosts and guests are shown in the figures to quickly overview the molecular recognition scope of synthetic macrocyclic receptors in chiral analysis and separation.  相似文献   

9.
Silica gel-bound crown ethers and aza macrocycles have been synthesized with the attaching arm connected to the carbon framework of the macrocycles. The interactions of these bound macrocycles with cations are almost identical to those involving the analogous free macrocycles. This has allowed for predictable cation separation, concentration, and removal processes to be performed on a small scale. Quantum mechanical calculations and NMR measurements indicate that similarly bound chiral macrocycles will be capable of use in separating chiral organic amines.Dedicated to the memory of Professor James J. Christensen who died on 5 September 1987.  相似文献   

10.
Calixarene-like chiral salen macrocycles can be used for the enantioselective fluorescent recognition of mandelic acid derivatives. It was observed that one enantiomer of mandelic acid causes a 28-fold increase in the fluorescence intensity of a chiral salen macrocycle, whereas the other enantiomer causes only a 14-fold fluorescence enhancement. This highly enantioselective fluorescent response makes chiral salen macrocycles useful for the enantioselective fluorescent recognition of some mandelic acid derivatives.  相似文献   

11.
报道了几种四吡唑类卟啉大环化合物的合成及其对Ru^2^+离子的配位性能。结果表明,配体环中4个sp^2杂化N原子均参与对Ru^2^+配位,形成一个近似配位平面,另有两个相同或不同的轴向配体位于平面上下,形成稳定的八面体配位结构。根据轴向配体的配位稳定性可方便地将其进行交换。  相似文献   

12.
A series of optically active macrocyclic and acyclic bisbinaphthyls have been synthesized and characterized. The structure of one of the bisbinaphthyl macrocycles has been established by a single-crystal X-ray analysis. The UV and fluorescence spectra of these chiral compounds in various solvents and at different concentrations are studied. Formation of excimers is observed for the macrocyclic bisbinaphthyl compounds. Introduction of conjugated substituents to the 6,6'-positions of the binaphthyl units in the macrocycles leads to greatly amplified fluorescence signals. Using the 6,6'-substituted bisbinaphthyl macrocycles in place of the unsubstituted macrocycles allows a 2 orders of magnitude reduction in the sensor concentration for the fluorescence measurements. These macrocycles have exhibited highly enantioselective fluorescent enhancements in the presence of chiral alpha-hydroxycarboxylic acids and N-protected alpha-amino acids. They are useful as fluorescent sensors for chiral recognition. The macrocycles show much greater enantioselectivity in the substrate recognition than their acyclic analogues.  相似文献   

13.
The use of capillary zone electrophoresis (CZE) for the separation of a group of 33 2,4-dinitrophenyl labeled amino acids (DNP-AA), including DNP-AA racemates, DNP-L-AA enantiomers and achiral DNP-AAs, was investigated. Alpha-, beta- and gamma-cyclodextrins (CDs) and their derivatives (hydroxypropyl derivatives of alpha-, beta- and gamma-CDs, polymeric beta-CD and 6A-methylamino-beta-cyclodextrin (MA-beta-CD)) served as complexing agents and chiral selectors in this investigation. Although native alpha- and gamma-CDs and their derivatives influenced the effective mobilities of the studied DNP-AAs in different ways, they generally failed to resolve enantiomers of the individual DNP-AAs. On the other hand, beta-CD and all of its derivatives were found to be effective in this respect. Of these, the best results were achieved with a positively charged MA-beta-CD and this chiral selector resolved enantiomers of ten DNP-AA racemates available for this study. However, a complete resolution of these enantiomers in one CZE run required that the effect of the chiral selector be complemented by complexing effects of polyvinyl pyrrolidone (PVP) or gamma-CD. Complexing and chiral recognition capabilities of MA-beta-CD combined with complexing effects of gamma-CD and PVP provided separating conditions suitable for the CZE separations of multicomponent mixtures of DNP-AAs with preserved resolutions of the enantiomers. For example, a mixture consisting of 43 DNP-AA constituents was resolved using an MA-beta-CD/gamma-CD combination with three peak overlaps.  相似文献   

14.
A pair of enantioselective, ditopic macrocycles is described; the receptors bind chiral ammonium cations in a manner that depends on the stereochemistry of the cation as well as the nature of its counter anion.  相似文献   

15.
Chirality, a characteristic tool of molecular recognition in nature, is often a complement of redox active systems. Scientists, in their eagerness to mimic such sophistication, have designed numerous chiral systems based on molecular entities with cavities, such as macrocycles and cages. In an attempt to combine chirality and redox-active species, in this contribution we report the synthesis and detailed characterization of a chiral shape-persistent molecular cage based on the combination of enantiopure diethynylallenes and electron-rich bridged triarylamines, also known as N-heterotriangulenes. Its ability for chiral recognition in solution was revealed through UV/vis titrations with enantiopure helicenes.  相似文献   

16.
A series of six benzoxazolinone aminoketones and height aminoalcohols has been synthetized as agonist and antagonist ligands for adrenergic receptors. For those benzoxazolinone derivatives which contain one or two chiral carbons, a stereoselective liquid chromatographic method, using silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H) or tris-4-methylbenzoate (Chiralcel OJ) as chiral stationary phase, has been developed. A better separation was achieved on cellulose carbamate phase compared to the cellulose ester phase. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The effects of structural features of the solutes on the discrimination between the enantiomers were examined.  相似文献   

17.
In the context of naturally occurring nitrogen heterocycles, nicotine is a chiral alkaloid present in tobacco plants, which can target and stimulate nicotinic acetylcholine receptors (nAChRs), a class of ligand-gated ion channels commonly located throughout the human brain. Due to its well-known toxicity for humans, there is considerable interest in the development of synthetic analogues; in particular, conformationally restricted analogues of nicotine have emerged as promising drug molecules for selective nAChR-targeting ligands. In the present mini-review, we will describe the synthesis of the conformationally restricted analogues of nicotine involving one or more catalytic processes. In particular, we will follow a systematic approach as a function of the heteroarene structure, considering: (a) 2,3-annulated tricyclic derivatives; (b) 3,4-annulated tricyclic derivatives; (c) tetracyclic derivatives; and (d) other polycyclic derivatives. For each of them we will also consider, when carried out, biological studies on their activity for specific nAChR subunits.  相似文献   

18.
Lipka  Emmanuelle  Bonte  Jean-Paul  Vaccher  Claude 《Chromatographia》2008,68(11):1053-1057

A series of six benzoxazolinone aminoketones and height aminoalcohols has been synthetized as agonist and antagonist ligands for adrenergic receptors. For those benzoxazolinone derivatives which contain one or two chiral carbons, a stereoselective liquid chromatographic method, using silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H) or tris-4-methylbenzoate (Chiralcel OJ) as chiral stationary phase, has been developed. A better separation was achieved on cellulose carbamate phase compared to the cellulose ester phase. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The effects of structural features of the solutes on the discrimination between the enantiomers were examined.

  相似文献   

19.
Among the tools available to chemists for drug design of bioactive compounds, the bioisosteric replacement of atoms or groups of atoms is the cornerstone of modern strategies. Despite the undeniable interest in amino-to-hydroxyl interchange, enzymatic deaminative hydroxylation remains unmatched. Herein, we report a user friendly and safe procedure to selectively convert aminoheterocycles to their hydroxylated analogues by means of a simple pyrylium tetrafluoroborate salt. The hydroxylation step relies on a Lossen-type rearrangement under mild conditions thus avoiding the use of strong hydroxide bases. In addition to biorelevant heterocycles, the deaminative hydroxylation of electron-deficient anilines was also demonstrated. Finally, mechanistic experiments allowed the identification of the key intermediates, thus unveiling a rather unusual mechanism for this formal aromatic substitution.  相似文献   

20.
Chiral pyrrolic macrocycles continue to attract interest. However, their molecular design remains challenging. Here, we report a calixpyrrole-based chiral macrocyclic system, calix[1]furan[1]pyrrole[1]thiophene ( 1 ), synthesized from an oligoketone. Macrocycle 1 adopts a partial cone conformation in the solid state, and undergoes racemization via ring inversion. Molecular dynamics simulations revealed that inversion of the thiophene is the rate determining step. Pyrrole N-methylation suppressed racemization and permitted chiral resolution. Enantioselective N-methylation also occurred in the presence of a chiral ammonium salt, although the stereoselectivity is modest. A unique feature of 1 is that it acts as a useful synthetic precursor to yield several calix[n]furan[n]pyrrole[n]thiophene products (n=2–4), including a calix[12]pyrrole analogue that to our knowledge constitutes the largest calix[n]pyrrole-like species to be structurally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号