首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A weakly nonlinear model is established for incompressible Rayleigh—Taylor instability with surface tension. The temporal evolution of a perturbed interface is explored analytically via the third-order solution. The dependence of the first three harmonics on the surface tension is discussed. The amplitudes of bubble and spike are greatly affected by surface tension. The saturation amplitude of the fundamental mode versus the Atwood number A is investigated with surface tension into consideration. The saturation amplitude decreases with increasing A. Surface tension exhibits a stabilizing phenomenon. It is shown that the asymmetrical development of the perturbed interface occurs much later for large surface tension effect.  相似文献   

2.
Using the method of the parameter expansion up to the third order, explicitly investigates surface tension effect on harmonics at weakly nonlinear stage in Rayleigh-Taylor instability (RTI) for arbitrary Atwood numbers and compares the results with those of classical RTI within the framework of the third-order weakly nonlinear theory. It is found that surface tension strongly reduces the linear growth rate of time, resulting in mild growth of the amplitude of the fundamental mode, and changes amplitudes of the second and third harmonics, as is expressed as a tension factor coupling in amplitudes of the harmonics. On the one hand, surface tension can either decrease or increase the space amplitude; on the other hand, surface tension can also change their phases for some conditions which are explicitly determined.  相似文献   

3.
The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ (T)=κSH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001].  相似文献   

4.
In this paper we shall consider the effect of compressibility on the RT instability in Z-pinch implosions, importance is the comparing growth rates of the RT instability for two systems of the compressible and incompressible MHD plasma. For which reason, we shall use as simple model as possible. Obviously, slab geometry is the most simple. For example, in the case of annular plasma implosion, during the linear growth phase of the RT instability there are vacuums at both sides of the annular plasma shell and its thickness is sufficiently smaller than the pinch radius, allowing us to use slab geometry instead of the annular one. For simplicity, we do not consider the effects of the finite Larmor radius and the sheared axial flow which are the important physical mechanisms to compress the RT instabilities.  相似文献   

5.
We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh-Taylor instability (ARTI) experiments by numerical simulations. A preheating model k(T) = KSH[1+f(T)], where KSH is the Spitzer Harm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI.  相似文献   

6.
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows.  相似文献   

7.
Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found that the frequency of the KHI is not influenced by the magnetic field. The magnetic field strength effect decreases the linear growth of the KHI, while the magnetic field gradient scale length effect increases its linear growth. The KHI can even be completely suppressed when the magnetic field is strong enough. The linear growth rate approaches a maximum when the magnetic field gradient scale length is large enough.  相似文献   

8.
The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].  相似文献   

9.
The linear growth of Rayleigh-Taylor instability(RTI) of two superimposed finite-thickness fluids in a gravitational field is investigated analytically. Coupling evolution equations for perturbation on the upper, middle and lower interfaces of the two stratified fluids are derived. The growth rate of the RTI and the evolution of the amplitudes of perturbation on the three interfaces are obtained by solving the coupling equations. It is found that the finite-thickness fluids reduce the growth rate of perturbation on the middle interface. However, the finite-thickness effect plays an important role in perturbation growth even for the thin layers which will cause more severe RTI growth. Finally, the dependence of the interface position under different initial conditions are discussed in some detail.  相似文献   

10.
范征锋  罗纪生 《计算物理》2008,25(6):701-704
求解烧蚀面附近流场的定常解,并以此作为基本流实现用高精度的WENO格式对烧蚀瑞利-泰勒不稳定性的数值模拟.线性增长率与Lindl公式以及线性稳定性分析给出的结果相符合,证明该数值模拟方法的准确性与精度,该方法还具有较好的界面变形捕捉能力.  相似文献   

11.
由Rayleigh-Taylor不稳定性引起的湍流混合广泛存在于自然现象和工程应用中.在重力场作用下,将重流体置于轻流体之上,系统处于平衡状态.此时,在轻重流体界面处添加微小扰动,重流体向下形成尖钉,轻流体向上形成气泡,轻重流体进入湍流混合状态,系统失去稳定状态,进入失稳过程.组分剖面揭示了流场在任意时刻任意高度上的成分,从而揭示了Rayleigh-Taylor不稳定性的发展过程.利用计算流体力学软件CFD2模拟常加速度场下二维多模Rayleigh-Taylor不稳定性的发展,研究了重流体组分剖面随Atwood数的变化.文章对比了Atwood数为0.1,0.5,0.9这3种情况下质量分数剖面.在利用气泡高度hb和尖钉深度hs对高度做归一化之后,质量分数剖面不依赖于密度比.在不同密度比下,质量分数曲线都满足fm~$\frac{1}{2}{\mathop{\rm erf}\nolimits} \left( {4\left( {\frac{{y-{h_{\rm{s}}}}}{{{h_{\rm{b}}}-{h_{\rm{s}}}}}-\frac{1}{2}} \right)} \right) + \frac{1}{2}$.   相似文献   

12.
A computational simulation is conducted to investigate the influence of Rayleigh-Taylor instability on liquid propellant reorientation flow dynamics for the tank of CZ-3A launch vehicle series fuel tanks in a low-gravity environment. The volume-of-fluid (VOF) method is used to simulate the free surface flow of gas-liquid. The process of the liquid propellant reorientation started from initially flat and curved interfaces are numerically studied. These two different initial conditions of the gas-liquid interface result in two modes of liquid flow. It is found that the Rayleigh Taylor instability can be reduced evidently at the initial gas-liquid interface with a high curve during the process of liquid reorientation in a low-gravity environment.  相似文献   

13.
利用自研的爆轰与冲击动力学欧拉计算程序和Steinberg-Guinan(SG)本构模型,数值模拟分析了样品初始参数(初始振幅、初始波长、样品初始厚度)和SG本构模型初始参数对爆轰驱动锡Rayleigh-Taylor(RT)不稳定性增长的影响。结果表明金属锡样品的初始参数对其RT不稳定性增长有很大的影响。RT不稳定性增长随着初始振幅的减小而减小,且存在一个截止初始振幅;存在一个最不稳定的模态(波长),当初始波长大于该波长时,RT不稳定性增长随着初始波长的减小而增大,反之,RT不稳定性增长随着初始波长的减小而减小;样品厚度的增大可以抑制RT不稳定性增长,而且存在一个样品截止厚度。金属锡的RT不稳定性增长对其SG本构模型应变硬化系数和应变硬化指数的变化不敏感,而对压力硬化系数和热软化系数比较敏感。从采用扰动增长法预估材料强度的角度来说,修正压力硬化系数以获得锡合理的材料强度是合理的途径。  相似文献   

14.
 实验研究了不相溶流体斜界面Rayleigh-Taylor(R-T)不稳定性湍流混合区的混合不对称性特征。利用高压气体加速装有不同液体的箱体,加速度方向由轻液体指向重液体,此时界面是R-T不稳定性的。利用阴影测试技术,研究了初始倾角9°的ZnCl2溶液/正己烷斜界面的演化规律,得出混合区内混合不对称、斜界面倾角渐增的规律。  相似文献   

15.
烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式   总被引:2,自引:0,他引:2       下载免费PDF全文
烧蚀瑞利泰勒(RT)不稳定性增长的准确估计是惯性约束聚变(ICF)的重要研究课题.增大低温电子热传导系数以考虑烧蚀面预热效应时,烧蚀面密度分布得到改善,烧蚀RT不稳定性线性增长率的二维计算值明显降低,与美国利弗莫尔实验室的实验值符合较好.考虑烧蚀面预热效应后,Lindl公式γ=kg/(1+kL)-βkVa与二维计算值有较大偏差.在分析研究发生偏差原因的过程中,发现了预热情况的Atwood数变小致稳现象.在合理近似下,得到了烧蚀RT不稳定性线性增长率的预热致稳公式γ=Akg/(1+AkL)-2kVa.此公式  相似文献   

16.
为了更好地理解不同空间坐标系下流体界面对Rayleigh-Taylor(RT)不稳定性弱非线性阶段谐波的影响,文章采用3阶小扰动展开法,解析研究了球坐标空间经典RT不稳定性弱非线性阶段谐波的演化规律,并和柱坐标空间以及直角坐标空间相应结果进行了对比研究.当球坐标系和直角坐标系中RT不稳定性界面扰动波长相同,球坐标系中初始扰动半径为无穷大时(即球坐标下RT不稳定性初始扰动半径相对于扰动波长为无穷大时),球坐标下RT不稳定性前4次谐波的结果和直角坐标系下的相应结果相同.研究表明:由初始界面曲率引起的Bell-Plesset(BP)效应和空间效应(直角坐标空间、柱坐标空间和球坐标空间)对谐波发展有较大的影响.即在不同正交曲线坐标系下,不同曲率的流体界面效应对RT不稳定性谐波发展有较大的影响.对于柱坐标空间和球坐标空间,2阶对0次谐波的反馈加强了界面向内收缩.研究还表明:界面效应增加了2次谐波的负反馈,然而,对于基模和3次谐波却有不同的影响.   相似文献   

17.
18.
Quantum effects on Rayleigh-Taylor instability of a stratified incompressible plasmas layer under the influence of vertical magnetic field are investigated. The solutions of the linearized equations of motion together with the boundary conditions lead to deriving the relation between square normalized growth rate and square normalized wave number in two algebraic equations and are numerically analyzed. In the case of the real solution of these two equations, they can be combined to generate a single equation. The results show that the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration.  相似文献   

19.
A scheme to suppress the Rayleigh-Taylor instability has been investigated for a direct-drive inertial fusion target. In a high-Z doped-plastic target, two ablation surfaces are formed separately-one driven by thermal radiation and the other driven by electron conduction. The growth of the Rayleigh-Taylor instability is significantly suppressed on the radiation-driven ablation surface inside the target due to the large ablation velocity and long density scale length. A significant reduction of the growth rate was observed in simulations and experiments using a brominated plastic target. A new direct-drive pellet was designed using this scheme.  相似文献   

20.
We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than \(\sqrt{L}\), and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号