首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Completing a series of works begun by Wiener [34], Paley and Wiener [28] and Ingham [9], a far-reaching generalization of Parseval"s identity was obtained by Beurling [4] for nonharmonic Fourier series whose exponents satisfy a uniform gap condition. Later this gap condition was weakened by Ullrich [33], Castro and Zuazua [5], Jaffard, Tucsnak and Zuazua [11] and then in [2] in some particular cases. In this paper we prove a general theorem which contains all previous results. Furthermore, applying a different method, we prove a variant of this theorem for nonharmonic Fourier series with vector coefficients. This result, partly motivated by control-theoretical applications, extends several earlier results obtained in [15] and [2]. Finally, applying these results we obtain an optimal simultaneous observability theorem concerning a system of vibrating strings. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
We use the matrix-valued Fejér–Riesz lemma for Laurent polynomials to characterize when a univariate shift-invariant space has a local orthonormal shift-invariant basis, and we apply the above characterization to study local dual frame generators, local orthonormal bases of wavelet spaces, and MRA-based affine frames. Also we provide a proof of the matrix-valued Fejér–Riesz lemma for Laurent polynomials.  相似文献   

3.
We show that every frame for a Hilbert space H can be written as a (multiple of a) sum of three orthonormal bases for H. We next show that this result is best possible by including a result of Kalton: A frame can be represented as a linear combination of two orthonormal bases if and only if it is a Riesz basis. We further show that every frame can be written as a (multiple of a) sum of two tight frames with frame bounds one or a sum of an orthonormal basis and a Riesz basis for H. Finally, every frame can be written as a (multiple of a) average of two orthonormal bases for a larger Hilbert space. Acknowledgements and Notes. This research was supported by NSF DMS 9701234. Part of this research was conducted while the author was a visitor at the “Workshop on Linear Analysis and Probability”, Texas A&M University.  相似文献   

4.
A Riesz basis is the image of an orthonormal basis under an invertible continuous linear mapping. In many interesting applications, perturbing an orthonormal basis in a controlled manner yields a Riesz basis. In this paper we find Riesz basis for of the form {bIk(x)sinλkx}, with bIk(x) bell functions, by perturbing the local sine and cosine orthonormal bases of Coifman and Meyer.  相似文献   

5.
Recently we found a family of nearly orthonormal affine Riesz bases of compact support and arbitrary degrees of smoothness, obtained by perturbing the one-dimensional Haar mother wavelet using B-splines. The mother wavelets thus obtained are symmetric and given in closed form, features which are generally lacking in the orthogonal case. We also showed that for an important subfamily the wavelet coefficients can be calculated in O(n) steps, just as for orthogonal wavelets. It was conjectured by Aldroubi, and independently by the author, that these bases cannot be obtained by a multiresolution analysis. Here we prove this conjecture. The work is divided into four sections. The first section is introductory. The main feature of the second is simple necessary and sufficient conditions for an affine Riesz basis to be generated by a multiresolution analysis, valid for a large class of mother wavelets. In the third section we apply the results of the second section to several examples. In the last section we show that our bases cannot be obtained by a multiresolution analysis.  相似文献   

6.
Ingham [4] improved a previous result of Wiener [10] on nonharmonic Fourier series. Modifying his weight function we obtain optimal results improving several earlier theorems of Kahane [7], Castro and Zuazua [2] and of Jaffard, Tucsnak, and Zuazua [5]. Then we apply these results to simultaneous observability problems.  相似文献   

7.
Construction of biorthogonal wavelets from pseudo-splines   总被引:4,自引:0,他引:4  
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10(2) (2001) 163–181], and their properties were extensively studied by Dong and Shen in [Pseudo-splines, wavelets and framelets, 2004, preprint]. It was further shown by Dong and Shen in [Linear independence of pseudo-splines, Proc. Amer. Math. Soc., to appear] that the shifts of an arbitrarily given pseudo-spline are linearly independent. This implies the existence of biorthogonal dual refinable functions (of pseudo-splines) with an arbitrarily prescribed regularity. However, except for B-splines, there is no explicit construction of biorthogonal dual refinable functions with any given regularity. This paper focuses on an implementable scheme to derive a dual refinable function with a prescribed regularity. This automatically gives a construction of smooth biorthogonal Riesz wavelets with one of them being a pseudo-spline. As an example, an explicit formula of biorthogonal dual refinable functions of the interpolatory refinable function is given.  相似文献   

8.
In this paper we investigate the connection between fusion frames and obtain a relation between indexes of the synthesis operators of a Besselian fusion frame and associated frame to it. Next we introduce a new notion of a Riesz fusion bases in a Hilbert space. We show that any Riesz fusion basis is equivalent with a orthonormal fusion basis. We also obtain generalizations of Theorem 4.6 of [1]. Our results generalize results obtained for Riesz bases in Hilbert spaces. Finally we obtain some results about stability of fusion frame sequences under small perturbations.  相似文献   

9.
In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in $\mathbb {R}^{2}$ and $\mathbb {R}^{3}$ . We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classical box-spline direction matrices. These non-separable band-limited definable functions are then used to construct non-separable band-limited wavelet tight frames via the unitary and oblique extension principles. However, these refinable functions cannot be used for constructing Riesz wavelets and orthonormal wavelets in low dimensions as they are not stable. Another construction scheme is then developed to construct stable refinable functions in low dimensions by using a special class of direction matrices. The resulting stable refinable functions allow us to construct a class of MRA-based non-separable band-limited Riesz wavelets and particularly band-limited orthonormal wavelets in low dimensions with small frequency support.  相似文献   

10.
Orthonormal bases of compactly supported wavelet bases correspond to subband coding schemes with exact reconstruction in which the analysis and synthesis filters coincide. We show here that under fairly general conditions, exact reconstruction schemes with synthesis filters different from the analysis filters give rise to two dual Riesz bases of compactly supported wavelets. We give necessary and sufficient conditions for biorthogonality of the corresponding scaling functions, and we present a sufficient conditions for the decay of their Fourier transforms. We study the regularity of these biorthogonal bases. We provide several families of examples, all symmetric (corresponding to “linear phase” filters). In particular we can construct symmetric biorthogonal wavelet bases with arbitraily high preassigned regularity; we also show how to construct symmetric biorthogonal wavelet bases “close” to a (nonsymmetric) orthonormal basis.  相似文献   

11.
In Han and Shen (SIAM J. Math. Anal. 38:530–556, 2006), a family of univariate short support Riesz wavelets was constructed from uniform B-splines. A bivariate spline Riesz wavelet basis from the Loop scheme was derived in Han and Shen (J. Fourier Anal. Appl. 11:615–637, 2005). Motivated by these two papers, we develop in this article a general theory and a construction method to derive small support Riesz wavelets in low dimensions from refinable functions. In particular, we obtain small support spline Riesz wavelets from bivariate and trivariate box splines. Small support Riesz wavelets are desirable for developing efficient algorithms in various applications. For example, the short support Riesz wavelets from Han and Shen (SIAM J. Math. Anal. 38:530–556, 2006) were used in a surface fitting algorithm of Johnson et al. (J. Approx. Theory 159:197–223, 2009), and the Riesz wavelet basis from the Loop scheme was used in a very efficient geometric mesh compression algorithm in Khodakovsky et al. (Proceedings of SIGGRAPH, 2000).  相似文献   

12.
The characterization of orthonormal bases of wavelets by means of convergent series involving only the mother wavelet is known, as well as the characterization of wavelets which can be constructed from a stationary multiresolution analysis or a scaling function (see for example [11] and references therein). Here we show that under some asymptotic condition, these results remain true in the nonstationary case.  相似文献   

13.
Anewwavelet-based geometric mesh compression algorithm was developed recently in the area of computer graphics by Khodakovsky, Schröder, and Sweldens in their interesting article [23]. The new wavelets used in [23] were designed from the Loop scheme by using ideas and methods of [26, 27], where orthogonal wavelets with exponential decay and pre-wavelets with compact support were constructed. The wavelets have the same smoothness order as that of the basis function of the Loop scheme around the regular vertices which has a continuous second derivative; the wavelets also have smaller supports than those wavelets obtained by constructions in [26, 27] or any other compactly supported biorthogonal wavelets derived from the Loop scheme (e.g., [11, 12]). Hence, the wavelets used in [23] have a good time frequency localization. This leads to a very efficient geometric mesh compression algorithm as proposed in [23]. As a result, the algorithm in [23] outperforms several available geometric mesh compression schemes used in the area of computer graphics. However, it remains open whether the shifts and dilations of the wavelets form a Riesz basis of L2(?2). Riesz property plays an important role in any wavelet-based compression algorithm and is critical for the stability of any wavelet-based numerical algorithms. We confirm here that the shifts and dilations of the wavelets used in [23] for the regular mesh, as expected, do indeed form a Riesz basis of L2(?2) by applying the more general theory established in this article.  相似文献   

14.
In a recent investigation [8] concerning the asymptotic behavior of Gram—Schmidt orthonormalization procedure applied to the nonnegative integer shifts of a given function, the problem of determining whether or not such functions form a Riesz system in arose. In this paper, we provide a sufficient condition to determine whether the nonnegative translates form a Riesz system on . This result is applied to identify a large class of functions for which very general translates enjoy the Riesz basis property in . August 5, 1998. Date revised: August 25, 1999. Date accepted: January 11, 2000.  相似文献   

15.
本文揭示了一个事实,小波不仅可构成L2空间中的正交基,小波分解与重构滤波还可产生N维空间中的正交基.在本文提出修改的小波变换算法之下,N点信号的小波变换等价于N维空间中的正交变换.用该算法进行信号或图象压缩,无需对信号或图象进行周期延拓,可严格地在N维空间中进行.  相似文献   

16.
The spectral decomposition theorem for a class of nonselfadjoint operators in a Hilbert space is obtained in the paper. These operators are the dynamics generators for the systems governed by 1–dim hyperbolic equations with spatially nonhomogeneous coefficients containing first order damping terms and subject to linear nonselfadjoint boundary conditions. These equations and boundary conditions describe, in particular, a spatially nonhomogeneous string subject to a distributed viscous damping and also damped at the boundary points. The main result leading to the spectral decomposition is the fact that the generalized eigenvectors (root vectors) of the above operators form Riesz bases in the corresponding energy spaces. The proofs are based on the transformation operators method. The classical concept of transformation operators is extended to the equation of damped string. Originally, this concept was developed by I. M. Gelfand, B. M. Levitan and V. A. Marchenko for 1–dim Schrödinger equation in connection with the inverse scattering problem. In the classical case, the transformation operator maps the exponential function (stationary wave function of the free particle) into the Jost solution of the perturbed Schrödinger equation. For the equation of a nonhomogeneous damped string, it is natural to introduce two transformation operators (outgoing and incoming transformation operators). The terminology is motivated by an analog with the Lax—Phillips scattering theory. The transformation operators method is used to reduce the Riesz bases property problem for the generalized eigenvectors to the similar problem for a system of nonharmonic exponentials whose complex frequencies are precisely the eigenvalues of our operators. The latter problem is solved based on the spectral asymptotics and known facts about exponential families. The main result presented in the paper means that the generator of a finite string with damping both in the equation and in the boundary conditions is a Riesz spectral operator. The latter result provides a class of nontrivial examples of non—selfadjoint operators which admit an analog of the spectral decomposition. The result also has significant applications in the control theory of distributed parameter systems.  相似文献   

17.
Wavelet packets provide an algorithm with many applications in signal processing together with a large class of orthonormal bases of L 2(ℝ), each one corresponding to a different splitting of L 2(ℝ) into a direct sum of its closed subspaces. The definition of wavelet packets is due to the work of Coifman, Meyer, and Wickerhauser, as a generalization of the Walsh system. A question has been posed since then: one asks if a (general) wavelet packet system can be an orthonormal basis for L 2(ℝ) whenever a certain set linked to the system, called the “exceptional set” has zero Lebesgue measure. This answer to this question affects the quality of wavelet packet approximation. In this paper we show that the answer to this question is negative by providing an explicit example. In the proof we make use of the “local trace function” by Dutkay and the generalized shift-invariant system machinery developed by Ron and Shen.  相似文献   

18.
Extending band-limited constructions of orthonormal refinable functions, a special class of periodic functions is used to generate a family of band-limited refinable functions. Characterizations of Riesz bases and frames formed by integer shifts of these refinable functions are obtained. Such families of refinable functions are employed to construct band-limited biorthogonal wavelet bases and biframes with desirable time-frequency localization.  相似文献   

19.
Given a Hilbert space and the generator of a strongly continuous group on this Hilbert space. If the eigenvalues of the generator have a uniform gap, and if the span of the corresponding eigenvectors is dense, then these eigenvectors form a Riesz basis (or unconditional basis) of the Hilbert space. Furthermore, we show that none of the conditions can be weakened. However, if the eigenvalues (counted with multiplicity) can be grouped into subsets of at most K elements, and the distance between the groups is (uniformly) bounded away from zero, then the spectral projections associated to the groups form a Riesz family. This implies that if in every range of the spectral projection we construct an orthonormal basis, then the union of these bases is a Riesz basis in the Hilbert space.  相似文献   

20.
The aim of this paper is to provide a large class of scaling functions for which the convergence analysis for the Galerkin method developed in [9] is applicable, whereas in that paper the only scaling functions considered for practical applications are B-splines and a few of the orthonormal Daubechies scaling functions. The functions considered here, were recently introduced in [12] where it was proved that they satisfy many properties making them interesting for the applications. In particular, here we show that the use of these functions has some advantages with respect to other basis functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号