首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The rate constant of the reaction Cl + CF(3)CF═CH(2) (k(1)) has been measured relative to several reference species using the relative rate technique with either gas chromatographic analysis with flame-ionization detection (GC/FID) or Fourier transform infrared (FTIR) analysis. Cl atoms were generated by UV irradiation of Cl(2)/CF(3)CF═CH(2)/reference/N(2)/O(2) mixtures. At 300-400 K in the presence of >20 Torr O(2), k(1) = 1.2 × 10(-11) e((+1100/RT)) cm(3) molecule(-1) s(-1). In N(2) diluent, k(1) has a sharp negative temperature coefficient resulting from the relatively small exothermicity of the following reactions: (1a) Cl + CF(3)CF═CH(2) ? CF(3)CFClCH(2)(?); (1b) Cl + CF(3)CF═CH(2) ? CF(3)CF(?)CH(2)Cl (reaction 1), which were determined in these experiments to be ~16.5 (±2.0) kcal mol(-1). This low exothermicity causes reaction 1 to become significantly reversible even at ambient temperature. The rate constant ratio for the reaction of the chloroalkyl radicals formed in reaction 1 with Cl(2) (k(2)) or O(2) (k(3)) was measured to be k(2)/k(3) = 0.4 e(-(3000/RT)) for 300-400 K. At 300 K, k(2)/k(3) = 0.0026. The reversibility of reaction 1 combined with the small value of k(2)/k(3) leads to a sensitive dependence of k(1) on the O(2) concentration. Products measured by GC/FID as a function of temperature are CF(3)CFClCH(2)Cl, CF(3)COF, and CH(2)Cl(2). The mechanism leading to these products is discussed. The rate constant for the reaction Cl + CF(3)CFClCH(2)Cl (k(11)) was measured as a function of temperature (300-462 K) at 760 Torr to be k(11) = 8.2 × 10(-12) e(-(4065/RT)) cm(3) molecule(-1) s(-1). Rate constants relative to CH(4) for the reactions of Cl with the reference compounds CH(3)Cl, CH(2)Cl(2), and CHCl(3) were measured at 470 K to resolve a literature discrepancy. (R = 1.986 cal K(-1) mol(-1)).  相似文献   

2.
双酚-S环氧树脂与琥珀酸酐固化反应动力学   总被引:5,自引:0,他引:5  
用差示扫描量热法(DSC)研究了双酚-S环氧树脂(BPSER)与琥珀酸酐固化反应的历程。实验结果表明,固化反应主要分两个阶段,前期由化学动力学控制,服从自催化机理。实验数据利用Kamal方程处理得到两个速率常数k、、k2及两个反应级数m、n、k1、k2的值随反应温度的升高呈增大的趋势,总反应级数m+n在2~2.5之间,当转化率达到40%左右后,由于交联程度增加,分子量迅速增长,分子间扩散较慢,进入  相似文献   

3.
The reaction of CH(3)C(O)O(2) with HO(2) has been investigated at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/CH(3)CHO/CH(3)OH/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)O, OH and O(2) (reaction ) has been determined from experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The dependence of the phenol yield on benzene concentration was found to be consistent with its formation from the OH-initiated oxidation of benzene, thereby confirming the presence of OH radicals in the system. The dependence of the phenol yield on the initial peroxy radical precursor reagent concentration ratio, [CH(3)OH](0)/[CH(3)CHO](0), is consistent with OH formation resulting mainly from the reaction of CH(3)C(O)O(2) with HO(2) in the early stages of the experiments, such that the limiting yield of phenol at high benzene concentrations is well-correlated with that of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel (3a)). However, a delayed source of phenol was also identified, which is attributed mainly to an analogous OH-forming channel of the reaction of HO(2) with HOCH(2)O(2) (reaction ), formed from the reaction of HO(2) with product HCHO. This was investigated in additional series of experiments in which Cl(2)/CH(3)OH/benzene/air and Cl(2)/HCHO/benzene/air mixtures were photolysed. The various reaction systems were fully characterised by simulations using a detailed chemical mechanism. This allowed the following branching ratios to be determined: CH(3)C(O)O(2) + HO(2)--> CH(3)C(O)OOH + O(2), k(3a)/k(3) = 0.38 +/- 0.13; --> CH(3)C(O)OH + O(3), k(3b)/k(3) = 0.12 +/- 0.04; --> CH(3)C(O)O + OH + O(2), k(3c)/k(3) = 0.43 +/- 0.10: HOCH(2)O(2) + HO(2)--> HCOOH + H(2)O + O(2), k(17b)/k(17) = 0.30 +/- 0.06; --> HOCH(2)O + OH + O(2), k(17c)/k(17) = 0.20 +/- 0.05. The results therefore provide strong evidence for significant participation of the radical-forming channels of these reactions, with the branching ratio for the title reaction being in good agreement with the value reported in one previous study. As part of this work, the kinetics of the reaction of Cl atoms with phenol (reaction (14)) have also been investigated. The rate coefficient was determined relative to the rate coefficient for the reaction of Cl with CH(3)OH, during the photolysis of mixtures of Cl(2), phenol and CH(3)OH, in either N(2) or air at 296 K and 760 Torr. A value of k(14) = (1.92 +/- 0.17) x 10(-10) cm(3) molecule(-1) s(-1) was determined from the experiments in N(2), in agreement with the literature. In air, the apparent rate coefficient was about a factor of two lower, which is interpreted in terms of regeneration of phenol from the product phenoxy radical, C(6)H(5)O, possibly via its reaction with HO(2).  相似文献   

4.
The carbonyl-carbon kinetic isotope effect (KIE) and the substituent effect were measured for the reaction of phenylthiomethyllithium (PhSCH(2)Li, 1) with benzaldehyde and benzophenone, and cyanomethyllithium (NCCH(2)Li, 2) with benzaldehyde, and the results were compared with those for other lithium reagents such as MeLi, PhLi, CH(2)=CHCH(2)Li, and CH(2)=C(OLi)C(CH(3))(3). It was previously shown that the reactions of MeLi, PhLi, and CH(2)=CHCH(2)Li proceed via a rate-determining electron transfer (ET) process whereas the reaction of lithium pinacolone enolate goes through the polar (PL) mechanism. The reaction of 1 with benzaldehyde gave no carbonyl-carbon KIE ((12)k/(13)k = 0.999 +/- 0.004), similar to that measured previously for the MeLi reaction with benzophenone ((12)k/(14)k = 1.000). The effect of substituents of the aromatic ring of benzaldehyde and benzophenone on the reactivity gave very small Hammett rho values of 0.17 +/- 0.03 and 0.26 +/- 0.05, respectively. These small rho values are again similar to that observed for the reaction of MeLi. Likewise the reactions of 2 with benzaldehydes gave small KIE and the rho value ((12)k/(13)k = 0.996 +/- 0.004, rho = 0.14 +/- 0.02). Dehalogenation and enone-isomerization probe experiments for 2 showed no evidence for the presence of radical-ion pair of sufficient lifetime during the course of the reaction. It is concluded that the reactions of 1 and 2 with the aromatic carbonyl compounds proceed via the electron transfer-radical coupling mechanism with rate-determining ET as in the reactions of MeLi, PhLi, and CH(2)=CHCH(2)Li.  相似文献   

5.
Pseudo-first-order rate constants (k(obs)) have been measured spectrophotometrically for reactions of O-4-nitrophenyl thionobenzoate (2) with a series of primary and acyclic secondary amines. The plots of k(obs) vs amine concentration are linear for the reaction of 2 with primary amines. The slope of the Br?nsted-type plot for the reaction of 2 with primary amines decreases from 0.77 to 0.17 as the amine basicity increases, indicating that the reaction proceeds through a zwitterionic addition intermediate in which the rate-determining step changes from the breakdown of the intermediate to the reaction products to the formation of the intermediate as the amine basicity increases. On the other hand, for reactions with all the acyclic secondary amines studied, the plot of k(obs) vs amine concentration exhibits an upward curvature, suggesting that the reaction proceeds through two intermediates, e.g., a zwitterionic addition intermediate and an anionic intermediate. The microscopic rate constants (k(1), k(-)(1), k(2), and k(3) where available) have been determined for the reactions of 2 with all the primary and secondary amines studied. The k(1) value is larger for the reaction with the primary amine than for the reaction with the isobasic acyclic secondary amines, while the k(-)(1) value is much larger for the latter reaction than for the former reaction. The k(3) value for the reaction with secondary amine is independent of the amine basicity. The small k(2)/k(-)(1) ratio is proposed to be responsible for the deprotonation process observed in aminolyses of carbonyl or thiocarbonyl derivatives.  相似文献   

6.
Pulse radiolysis experiments were performed on hydrogenated, alkaline water at high temperatures and pressures to obtain rate constants for the reaction of hydrated electrons with hydrogen atoms (H* + e-(aq) --> H(2) + OH-, reaction 1) and the bimolecular reaction of two hydrated electrons (e-(aq) + e-(aq) --> H(2) + 2 OH-, reaction 2). Values for the reaction 1 rate constant, k(1), were obtained from 100 - 325 degrees C, and those for the reaction 2 rate constant, k(2), were obtained from 100 - 250 degrees C, both in increments of 25 degrees C. Both k(1) and k(2) show non-Arrhenius behavior over the entire temperature range studied. k(1) shows a rapid increase with increasing temperature, where k(1) = 9.3 x 10(10) M(-1) s(-1) at 100 degrees C and 1.2 x 10(12) M(-1) s(-1) at 325 degrees C. This behavior is interpreted in terms of a long-range electron-transfer model, and we conclude that e-aq diffusion has a very high activation energy above 150 degrees C. The behavior of k(2) is similar to that previously reported, reaching a maximum value of 5.9 x 10(10) M(-1) s(-1) at 150 degrees C in the presence of 1.5 x 10(-3) m hydroxide. At higher temperatures, the value of k(2) decreases rapidly and above 250 degrees C is too small to measure reliably. We suggest that reaction 2 is a two-step reaction, where the first step is a proton transfer stimulated by the proximity of two hydrated electrons, followed immediately by reaction 1.  相似文献   

7.
Rate coefficients for three daytime atmospheric reactions of (Z)-3-hexenal (3HA)-photolysis (J(1)), reaction with OH radicals (k(2)), and reaction with ozone (k(3))-were measured at 760 Torr and 298 K using a 6 m(3) photochemical reaction chamber. The UV absorption cross sections (σ(3HA)(λ)) were obtained in the wavelength range 240-350 nm. The photodissociation rate of 3HA relative to that of NO(2) was measured by a solar simulator at 760 Torr and was determined to be J(1)/J(NO2) = (4.7 ± 0.4) × 10(-3). Using the obtained σ(3HA)(λ) and J(1)/J(NO2), the effective photodissociation quantum yield was calculated to be Φ(3HA) = 0.25 ± 0.06. The rate coefficient for the reaction with OH radicals was measured by the relative rate method with three reference compounds and was determined to be k(2) = (6.9 ± 0.9) × 10(-11) cm(3) molecule(-1) s(-1). The rate coefficient for the reaction with ozone was measured by an absolute method and was determined to be k(3) = (3.5 ± 0.2) × 10(-17) cm(3) molecule(-1) s(-1). Using the obtained rate coefficients, the daytime atmospheric lifetime of 3HA was estimated.  相似文献   

8.
The oxidation of 1-phenyl-2-thiourea (PTU) by chlorite was studied in aqueous acidic media. The reaction is extremely complex with reaction dynamics strongly influenced by the pH of reaction medium. In excess chlorite concentrations the reaction stoichiometry involves the complete desulfurization of PTU to yield a urea residue and sulfate: 2ClO2- + PhN(H)CSNH2 + H2O --> SO4(2-) + PhN(H)CONH2 + 2Cl- + 2H+. In excess PTU, mixtures of sulfinic and sulfonic acids are formed. The reaction was followed spectrophotometrically by observing the formation of chlorine dioxide which is formed from the reaction of the reactive intermediate HOCl and chlorite: 2ClO2- + HOCl + H+ --> 2ClO2(aq) + Cl- + H2O. The complexity of the ClO2- - PTU reaction arises from the fact that the reaction of ClO2 with PTU is slow enough to allow the accumulation of ClO2 in the presence of PTU. Hence the formation of ClO2 was observed to be oligooscillatory with transient formation of ClO2 even in conditions of excess oxidant. The reaction showed complex acid dependence with acid catalysis in pH conditions higher than pKa of HClO2 and acid retardation in pH conditions of less than 2.0. The rate of oxidation of PTU was given by -d[PTU]/dt = k1[ClO2-][PTU] + k2[HClO2][PTU] with the rate law: -d[PTU]/dt = [Cl(III)](T)[PTU]0/K(a1) + [H+] [k1K(a1) + k2[H+]]; where [Cl(III)]T is the sum of chlorite and chlorous acid and K(a1) is the acid dissociation constant for chlorous acid. The following bimolecular rate constants were evaluated; k1 = 31.5+/-2.3 M(-1) s(-1) and k2 = 114+/-7 M(-1) s(-1). The direct reaction of ClO2 with PTU was autocatalytic in low acid concentrations with a stoichiometric ratio of 8:5; 8ClO2 + 5PhN(H)CSNH2 + 9H2O --> 5SO4(2-) + 5PhN(H)CONH2 + 8Cl- + 18H+. The proposed mechanism implicates HOCl as a major intermediate whose autocatalytic production determined the observed global dynamics of the reaction. A comprehensive 29-reaction scheme is evoked to describe the complex reaction dynamics.  相似文献   

9.
Konidari CN  Karayannis MI 《Talanta》1991,38(9):1019-1026
The reduction of 2,6-dichlorophenolindophenol (DCPI) by sulphides and sulphites has been studied kinetically by the stopped-flow technique. The reaction is first-order with respect to each of the reactants. From the distribution diagrams for the species DH(+)(2), DH and D(-) for DCPI and H(2)Q, HQ(-) and Q(2-) for sulphides or sulphites, a mechanism is proposed which suggests partial reactions of all possible combinations of the reacting species at any pH. An equation for calculation of the second-order reaction rate constants k at any pH is derived, which gives k as a function of [H(+)], the partial reaction rate constants and the dissociation constants of DCPI and H(2)S or H(2)SO(3). Values of the overall reaction rate constants over a wide pH-range have been determined, together with values of k for all possible partial reactions. For particular pH-values the second-order reaction rate constant was determined by four different methods. Mean values of k = 251 +/- 1 and 240 +/- 1 l.mole(-1).sec(-1) were obtained for pH 3.15 and 4.17, respectively, for the DCPI-Na(2)S reaction and k = 137 +/- 1, 127 +/- 1 and 136 +/- 1 l.mole(-1).sec(-1) for pH 2.02, 4.25 and 5.10, respectively, for the DCPI-Na(2)SO(3) reaction. From the slopes of the linear Arrhenius plots activation energies of 6.6 +/- 0.2 and 4.0 +/- 0.1 kcal/mole for the DCPI-Na(2)S and DCPI-Na(2)SO(3) reactions, respectively were calculated. The effect of ionic strength on the reactions supports the proposed mechanism.  相似文献   

10.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

11.
13C and (2)H kinetic isotope effects were determined for the ene reaction of formaldehyde with 2-methyl-2-butene at natural abundance catalyzed by diethylaluminum chloride. The reactive methyl group exhibits a k(12)(C)/k(13)(C) of 1.006-1.009 and a k(H)/k(D) of approximately 1.22-1.23. The latter represents a combination of primary and secondary effects and is consistent with a significant primary deuterium isotope effect. A very close correspondence of the other isotope effects with the equilibrium isotope effects predicted for formation of a model intermediate cation is observed. An intermolecular deuterium isotope effect of 2.0-2.5 was observed under several reaction conditions in the Lewis acid-catalyzed reaction of formaldehyde with d(0)/d(12)-tetramethylethylene. The results are interpreted as supporting the reversible formation of an essentially classical open cation followed by rate-limiting proton transfer.  相似文献   

12.
The kinetics of the reaction of benzyl radicals with [L(1)(H(2)O)RhH{D}](2+) (L(1)=1,4,8,11-tetraazacyclotetradecane) were studied directly by laser-flash photolysis. The rate constants for the two isotopologues, k=(9.3±0.6) × 10(7) M(-1) s(-1) (H) and (6.2±0.3) × 10(7) M(-1) s(-1) (D), lead to a kinetic isotope effect k(H)/k(D)=1.5±0.1. The same value was obtained from the relative yields of PhCH(3) and PhCH(2)D in a reaction of benzyl radicals with a mixture of rhodium hydride and deuteride. Similarly, the reaction of methyl radicals with {[L(1)(H(2)O)RhH](2+) + [L(1)(H(2)O)RhD](2+)} produced a mixture of CH(4) and CH(3)D that yielded k(H)/k(D)=1.42±0.07. The observed small normal isotope effects in both reactions are consistent with reduced sensitivity to isotopic substitution in very fast hydrogen-atom abstraction reactions. These data disprove a literature report claiming much slower kinetics and an inverse kinetic isotope effect for the reaction of methyl radicals with hydrides of L(1)Rh.  相似文献   

13.
The reactions of three unsaturated alcohols (linalool, 6-methyl-5-hepten-2-ol, and 3-methyl-1-penten-3-ol) with ozone and OH radicals have been studied using simulation chambers at T ~ 296 K and P ~ 760 Torr. The rate coefficient values (in cm(3) molecule(-1) s(-1)) determined for the three compounds are linalool, k(O3) = (4.1 ± 1.0) × 10(-16) and k(OH) = (1.7 ± 0.3) × 10(-10); 6-methyl-5-hepten-2-ol, k(O3) = (3.8 ± 1.2) × 10(-16) and k(OH) = (1.0 ± 0.3) × 10(-10); and 3-methyl-1-penten-3-ol, k(O3) = (5.2 ± 0.6) × 10(-18) and k(OH) = (6.2 ± 1.8) × 10(-11). From the kinetic data it is estimated that, for the reaction of O(3) with linalool, attack at the R-CH═C(CH(3))(2) group represents around (93 ± 52)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the overall reaction, with reaction at the R-CH═CH(2) group accounting for about (1.3 ± 0.5)% (k(3-methyl-1-penten-3-ol)/k(linalool)). In a similar manner it has been calculated that for the reaction of OH radicals with linalool, attack of the OH radical at the R-CH═C(CH(3))(2) group represents around (59 ± 18)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the total reaction, while addition of OH to the R-CH═CH(2) group is estimated to be around (36 ± 6)% (k(3-methyl-1-penten-3-ol)/k(linalool)). Analysis of the products from the reaction of O(3) with linalool confirmed that addition to the R-CH═C(CH(3))(2) group is the predominant reaction pathway. The presence of formaldehyde and hydroxyacetone in the reaction products together with compelling evidence for the generation of OH radicals in the system indicates that the hydroperoxide channel is important in the loss of the biradical [(CH(3))(2)COO]* formed in the reaction of O(3) with linalool. Studies on the reactions of O(3) with the unsaturated alcohols showed that the yields of secondary organic aerosols (SOAs) are higher in the absence of OH scavengers compared to the yields in their presence. However, even under low-NO(X) concentrations, the reactions of OH radicals with 3-methyl-1-penten-3-ol and 6-methyl-5-hepten-2-ol will make only a minor contribution to SOA formation under atmospheric conditions. Relatively high yields of SOAs were observed in the reactions of OH with linalool, although the initial concentrations of reactants were quite high. The importance of linalool in the formation of SOAs in the atmosphere requires further investigation. The impact following releases of these unsaturated alcohols into the atmosphere are discussed.  相似文献   

14.
The reaction of molecular oxygen with a Pd(II)-hydride species to form a Pd(II)-hydroperoxide represents one of the proposed catalyst reoxidation pathways in Pd-catalyzed aerobic oxidation reactions, but well-defined examples of this reaction were discovered only recently. Here, we present a mechanistic study of the reaction of O2 with trans-(IMes) 2Pd(H)(OBz), 1 (IMes = 1,3-dimesitylimidazol-2-ylidene), which yields trans-(IMes) 2Pd(OOH)(OBz), 2. The reaction was monitored by (1)H NMR spectroscopy in benzene-d6, and kinetic studies reveal a two-term rate law, rate = k1[1] + k2[1][BzOH], and a small deuterium kinetic isotope effect, k(Pd-H)/k(Pd-D) = 1.3(1). The rate is independent of the oxygen pressure. The data support a stepwise mechanism for the conversion of 1 into 2 consisting of rate-limiting reductive elimination of BzOH from 1 followed by rapid reaction of molecular oxygen with (IMes) 2Pd(0) and protonolysis of a Pd-O bond of the eta(2)-peroxo complex (IMes) 2Pd(O2). Benzoic acid and other protic additives (H2O, ArOH) catalyze the oxygenation reaction, probably by stabilizing the transition state for reductive elimination of BzOH from 1. This study provides the first experimental validation of the mechanism traditionally proposed for aerobic oxidation of Pd-hydride species.  相似文献   

15.
The reaction of fenitrothion with a series of alpha-nucleophile oximates having pK(a) values in the range of 7.7-11.8 was studied both in the absence and presence of cetyltrimethylammonium (CTA(+)) surfactants. Reaction with CTA-oximates was found to proceed through two pathways: S(N)2(P) and S(N)2(C); an S(N)Ar pathway was not observed. Accordingly, the observed rate constants were dissected into the two corresponding S(N)2(P) and S(N)2(C) pathways. Use of the pseudophase ion exchange (PPIE) model for micellar catalysis in the CTA(+) system allowed evaluation of micellar second-order rate constant (k(2m)) parameters and binding constants, (K(S)). K(S) values for CTA-oximates were found to vary with the counterion, and the rate enhancement depended on a combination of K(S) and k(2m) values. k(2m)/k(2w) values ranged from 0.0025 to 0.64, suggesting that a concentration effect is mainly responsible for the rate enhancement. In the absence of surfactant, an alpha-effect (i.e., k(alpha)/k(normal)) varying from 8 to 450 was observed for the oximate reaction, decreasing with increasing pK(a). It is proposed that differential solvation (transition-state imbalance) is a cause of the alpha-effect in this system.  相似文献   

16.
A kinetic study is reported for nucleophilic substitution reactions of 2,4-dinitro-1-fluorobenzene (DNFB) with a series of secondary amines in MeCN and H2O at 25.0 degrees C. The reaction in MeCN results in an upward curvature in the plot of k(obsd) vs [amine], indicating that the reaction proceeds through a rate-limiting proton transfer (RLPT) mechanism. On the contrary, the corresponding plot for the reaction in H2O is linear, implying that general base catalysis is absent. The ratios of the microscopic rate constants for the reactions in MeCN are consistent with the proposed mechanism, e.g., the facts that k2/k(-1) < 1 and k3/k2 > 10(2) suggest that formation of a Meisenheimer complex occurs before the rate-limiting step and the deprotonation by a second amine molecule becomes dominant when [amine] > 0.01 M, respectively. The Br?nsted-type plots for k1k2/k(-1) and k1k3/k(-1) are linear with betanuc values of 0.82 and 0.84, respectively, which supports the proposed mechanism. The Br?nsted-type plot for the reactions in H2O is also linear with betanuc = 0.52 which has been interpreted to indicate that the reaction proceeds through rate-limiting formation of a Meisenheimer complex. DNFB is more reactive toward secondary amines in MeCN than in H2O. The enhanced basicity of amines as well as the increased stability of the intermediate whose charges are delocalized through resonance are responsible for the enhanced reactivity in the aprotic solvent.  相似文献   

17.
o-Thioquinone methide, 2, was generated in aqueous solution by flash photolysis of benzothiete, 1, and rates of hydration of this quinone methide to o-mercaptobenzyl alcohol, 3, were measured in perchloric acid solutions, using H2O and D2O as the solvent, and also in acetic acid and tris(hydroxymethyl)methylammonium ion buffers, using H2O as the solvent. The rate profiles constructed from these data show hydronium-ion-catalyzed and uncatalyzed hydration reaction regions, just like the rate profiles based on literature data for hydration of the oxygen analogue, o-quinone methide, of the presently examined substrate. Solvent isotope effects on hydronium-ion catalysis of hydration for the two substrates, however, are quite different: k(H)/k(D) = 0.42 for the oxygen quinone methide, whereas k(H)/k(D) = 1.66 for the sulfur substrate. The inverse nature (k(H)/k(D) < 1) of the isotope effect in the oxygen system indicates that this reaction occurs by a preequilibrium proton-transfer reaction mechanism, with protonation of the substrate on its oxygen atom being fast and reversible and capture of the benzyl-type carbocationic intermediate so formed being rate-determining. The normal direction (k(H)/k(D) > 1) of the isotope effect in the sulfur system, on the other hand, suggests that protonation of the substrate on its sulfur atom is in this case rate-determining, with carbocation capture a fast following step. A semiquantitative argument supporting this hypothesis is presented.  相似文献   

18.
Rate coefficients for the reaction (3)NCN + NO → products (R3) were measured in the temperature range 251-487 K at pressures from 10 mbar up to 50 bar with helium as the bath gas. The experiments were carried out in slow-flow reactors by using pulsed excimer laser photolysis of NCN(3) at 193 or 248 nm for the production of NCN. Pseudo-first-order conditions ([NCN](0) ? NO) were applied, and NCN was detected time-resolved by resonant laser-induced fluorescence excited near 329 nm. The measurements at the highest pressures yielded values of k(3) ~ 8 × 10(-12) cm(3) s(-1) virtually independent of temperature and pressure, which indicates a substantially smaller high-pressure limiting value of k(3) than predicted in earlier works. Our experiments at pressures below 1 bar confirm the negative temperature and positive pressure dependence of the rate coefficient k(3) found in previous investigations. The falloff behavior of k(3) was rationalized by a master equation analysis based on a barrierless association step (3)NCN + NO ? NCNNO((2)A″) followed by a fast internal conversion NCNNO((2)A″) ? NCNNO((2)A'). From 251-487 K and above 30 mbar, the rate coefficient k(3) is well represented by a Troe parametrization for a recombination/dissociation reaction, k(3)(T,P) = k(4)(∞)k(4)(0)[M]F(k(4)(0)[M] + k(4)(∞))(-1), where k(4) represents the rate coefficient for the recombination reaction (3)NCN + NO. The following parameters were determined (30% estimated error of the absolute value of k(3)): k(4)(0)[M=He] = 1.91 × 10(-30)(T/300 K)(-3.3) cm(6) s(-1)[He], k(4)(∞) = 1.12 × 10(-11) exp(-23 K/T) cm(3) s(-1), and F(C) = 0.28 exp(173 K/T).  相似文献   

19.
酸酐固化环氧树脂/蒙脱土复合材料的等温固化动力学   总被引:5,自引:0,他引:5  
用等温差示扫描量热法(DSC)研究了酸酐固化环氧树脂/蒙脱土复合材料的等温固化过程,考察了未处理的蒙脱土(MMT)和有机蒙脱土(OMMT)对环氧树脂固化动力学的影响. 实验表明, 环氧树脂的固化过程包含自催化机理,加入蒙脱土没有改变固化反应机理. 用Kamal方程对该体系的固化过程进行拟合,得到反应级数m、n,反应速率常数k1、k2,总反应级数(m + n)在2.4~3.0之间. MMT的加入使环氧树脂体系的k1、k2有所降低,而OMMT的加入对体系的k1、k2影响较为复杂,加入蒙脱土对环氧树脂固化体系的活化能影响较小.  相似文献   

20.
The kinetics of the cure reaction for system of o-cresol formaldehyde epoxy resin (o-CFER)/succinic anhydride (SA) and tertiary amine as a catalyst was investigated with a differential scanning calorimeter (DSC). Autocatalytic behavior was shown in the first stages of the cure for the system, which was well described by the model proposed by Kamal that includes two rate constants, k1 and k2, and two reaction orders, m and n. The overall reaction order, m + n, is in the range 2.1-2.6, and the activation energy for k1 and k2 was 109 and 72.0 kJ/mol, respectively. In the later stages, a cross-linked network was formed and the cure reaction is mainly controlled by diffusion. Diffusion factor, f(alpha), was introduced into Kamal's equation, then the calculated values agree very well with the experimental data. The molecular mechanism of this curing reaction was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号