首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
江润生  张立鹏 《化学通报》2016,79(9):793-792
表面张力是流体重要的物理性质,测定液体表面张力的方法通常包括毛细管上升法、最大气泡压力法、吊环法/吊片法、滴重法/滴体积法、旋滴法和悬滴法。本文综述了测定界面处表(界)面张力和表面压力的方法,详细介绍了基于最大拉力法(Whilhemy吊片法)改进的表面张力测试技术(Du Noüy-Padday),并且概述了这一技术近些年在生物研究、药物研发以及环境监测等领域方面的最新应用。  相似文献   

2.
The behavior of liquid marbles encapsulated with various powders, immersed in oil, and exposed to a uniform DC field was investigated. At some critical value of the electric field, the Taylor instability of the marble shape took place, accompanied by the appearance of a cone and jetting a small droplet. The squared critical electric field was linear dependent on inverse of the size parameter of the marble. In some cases, the extrapolation of this linear dependence to the zero field gave the finite value of the spherical marble radius corresponding to the Rayleigh limit that meant that the marbles were charged. Lycopodium-coated marbles remained neutral under the action of a DC field, as well as a pure water droplet. Therefore, charging marbles is determined by their powder coverage. The data on effective surface tension at marble–oil interfaces were extracted from the above linear dependence for the uncharged marble. The effective surface tension was measured in parallel by the capillary rise method.  相似文献   

3.
Transport of a water droplet on a solid surface can be achieved by differentially modifying the contact angles at either side of the droplet using capacitive charging of the solid-liquid interface (i.e., electrowetting-on-dielectric) to create a driving force. Improved droplet mobility can be achieved by modifying the surface topography to enhance the effects of a hydrophobic surface chemistry and so achieve an almost complete roll-up into a superhydrophobic droplet where the contact angle is greater than 150 degrees . When electrowetting is attempted on such a surface, an electrocapillary pressure arises which causes water penetration into the surface features and an irreversible conversion to a state in which the droplet loses its mobility. Irreversibility occurs because the surface tension of the liquid does not allow the liquid to retract from these fixed surface features on removal of the actuating voltage. In this work, we show that this irreversibility can be overcome by attaching the solid surface features to the liquid surface to create a liquid marble. The solid topographic surface features then become a conformable "skin" on the water droplet both enabling it to become highly mobile and providing a reversible liquid marble-on-solid system for electrowetting. In our system, hydrophobic silica particles and hydrophobic grains of lycopodium are used as the skin. In the region corresponding to the solid-marble contact area, the liquid marble can be viewed as a liquid droplet resting on the attached solid grains (or particles) in a manner similar to a superhydrophobic droplet resting upon posts fixed on a solid substrate. When a marble is placed on a flat solid surface and electrowetting performed it spreads but with the water remaining effectively suspended on the grains as it would if the system were a droplet of water on a surface consisting of solid posts. When the electrowetting voltage is removed, the surface tension of the water droplet causes it to ball up from the surface but carrying with it the conformable skin. A theoretical basis for this electrowetting of a liquid marble is developed using a surface free energy approach.  相似文献   

4.
A Novel Method for Surface Free-Energy Determination of Powdered Solids   总被引:1,自引:0,他引:1  
Interfacial solid/liquid interactions play a crucial role in wetting, spreading, and adhesion processes. In the case of a flat solid surface, contact angle measurements are commonly utilized for the determination of the solid surface free energy and its components. However, if such a surface cannot be obtained, then the contact angle can not be measured directly. Usually methods based on imbibition of probe liquids into a thin porous layer or column are applied. In this paper a novel method, also based on the capillary rise, is proposed for the solid surface free-energy components determination. Actually, it is a modification of the thin column wicking method; similar theoretical background can be applied together with that appropriate for the capillary rise method of liquid surface tension determination. The proposed theoretical approach and procedure are verified by using single glass capillaries, and then alumina and ground glass powders were used for the method testing. Thus obtained surface free-energy components for these solids, for both glass and alumina, agree well with the literature values.  相似文献   

5.
Ionic liquids (ILs)-stabilized iron oxide (Fe(2)O(3)) nanoparticles were synthesized by the ultrasonic decomposition of iron carbonyl precursors in [EMIm][BF(4)] without any stabilizing or capping agents. The Fe(2)O(3) nanoparticles were isolated and characterized by X-ray powder diffraction, transmission electron microscopy and susceptibility measurements. The physicochemical properties of ILs containing magnetic Fe(2)O(3) nanoparticles (denoted as Fe(2)O(3)@[EMIm][BF(4)]), including surface properties, density, viscosity and stability, were investigated in detail and compared with that of [EMIm][BF(4)]. The Fe(2)O(3)@[EMIm][BF(4)] can be directly used as magnetic ionic liquid marble by coating with hydrophobic and unreactive polytetrafluoroethylene (PTFE), for which the effective surface tension was determined by the puddle height method. The resulting magnetic ionic liquid marble can be transported under external magnetic actuation, without detachment of magnetic particles from the marble surface that is usually observed in water marble.  相似文献   

6.
Effective surface tension of liquid marbles was measured by three independent experimental techniques: vibration, shape analysis, and maximal marble height. Marbles obtained with various powders: polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, and lycopodium, were studied. The effective surface tension depends strongly on the kind of powder coating the marble. The capillary interaction between particles coating the marble was involved for qualitative interpretation of the reported data.  相似文献   

7.
We discuss three topologically different methods for calculating the surface tension between a flat solid and a liquid from theoretical and computer simulation viewpoints. The first method, commonly used in experiments, measures the contact angle at which a static droplet of liquid rests on a solid surface. We present a new analysis algorithm for this method and explore the effects of line tension on the contact angle. The second method, commonly used computer simulations, uses the pressure tensor through the virial in a system where a thick, infinitely extended slab of liquid rests on a solid surface. The third method, which is original to this paper and is closest to the thermodynamic definition of surface tension, applies to a spherical solid in contact with liquid in which the flat solid is recovered by extrapolating the sphere radius to infinity. We find that the second and third methods agree with each other, while the first method systematically underestimates surface tension values.  相似文献   

8.
以Washburn方程为理论依据,采用毛细管上升法,设计了简易实验装置,测定了氢氧化钙粉末在水、二甲基亚砜和甘油中的润湿接触角.在此实验结果基础上,利用Y-G-G-F-V方程建立了计算固相表面张力和液-固界面张力的表达式,并分别计算出氢氧化钙粉末的表面张力、氢氧化钙与水、二甲基亚砜和甘油的液-固界面张力,为固体粉末的表...  相似文献   

9.
The mechanical response of particle-laden fluid interfaces is determined by measuring the internal pressures of particle-coated drops as a function of the drop volume. The particle monolayers undergoing compression-expansion cycles exhibit three distinct states: fluid state, jammed state, and buckled state. The P-V curves are compared to the surface pressure isotherms Pi-A that are measured using a Langmuir trough and a Wilhelmy plate on a flat water-decane interface covered with the same particles. We find that in the fluid and jammed states, the water drop in decane can be described by the Young-Laplace equation. Therefore in these relatively low compression states, the bulk pressure measurements can be used to deduce the interfacial tension of the droplets and yield similar surface pressure isotherms to the ones measured with the Wilhelmy plate. In the buckled state, the internal pressure of the drop yields a zero value, which is consistent with the zero interfacial tension measured with the Wilhelmy plate. Moreover we find that the compressibility in the jammed state does not depend on the particle size.  相似文献   

10.
The differential version of the method of capillary rise has been used to measure the capillary constant and calculate the surface tension of methane-nitrogen solutions. Experiments have been conducted in the temperature range from 95 to 170 K at pressures up to 4 MPa. Experimental data on surface tension have been compared with the results of calculations by thermodynamic models. Equations are given which describe the dependence of the capillary constant of a solution on its temperature and composition.  相似文献   

11.
A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ~ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.  相似文献   

12.
An oscillating capillary jet method is implemented to measure surface tension of aqueous nonionic surfactant solutions as a function of surface age from the jet orifice. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine surface tension of liquids. The method is first validated using deionized water and isopropyl alcohol (constant surface tension test fluids) and a procedure is described to identify the optimum wavelength from the breakup point, which produces the smallest error in surface tension measurements. Dynamic surface tension data of concentrated aqueous Tergitol NP-8 surfactant solutions is then presented. The measurements are performed over a spatial length of approximately 1.5 wavelengths, a span corresponding to 0.6-4.2 ms time window from the jet orifice. Submillisecond surface age measurements are made possible by decreasing the jet diameter. Increased surfactant concentrations make the liquid jet more stable and allow measurements at higher surface ages. The correlation of Hua and Rosen fits well the dynamic surface tension data, which includes submillisecond surface ages. Finally, the time required for surface tension to reach equilibrium levels is estimated using a simple adsorption kinetics theory of surfactant molecules on the liquid/air interface.  相似文献   

13.
Axisymmetric drop-shape analysis-no apex (ADSA-NA) is a recent drop-shape method that allows the simultaneous measurement of contact angles and surface tensions of drop configurations without an apex (i.e., a sessile drop with a capillary protruding into the drop). Although ADSA-NA significantly enhanced the accuracy of contact angle and surface tension measurements compared to that of original ADSA using a drop with an apex, it is still not as accurate as a surface tension measurement using a pendant drop suspended from a holder. In this article, the computational and experimental aspects of ADSA-NA were scrutinized to improve the accuracy of the simultaneous measurement of surface tensions and contact angles. It was found that the results are relatively insensitive to different optimization methods and edge detectors. The precision of contact angle measurement was enhanced by improving the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. To optimize the experimental design, the capillary was replaced with an inverted sharp-edged pedestal, or holder, to control the drop height and to ensure the axisymmetry of the drops. It was shown that the drop height is the most important experimental parameter affecting the accuracy of the surface tension measurement, and larger drop heights yield lower surface tension errors. It is suggested that a minimum nondimensional drop height (drop height divided by capillary length) of 1.7 is required to reach an error of less than 0.2 mJ/m(2) for the measured surface tension. As an example, the surface tension of water was measured to be 72.46 ± 0.04 at 24 °C by ADSA-NA, compared to 72.39 ± 0.01 mJ/m(2) obtained with pendant drop experiments.  相似文献   

14.
Contact angle (θ) measurements on poly(tetrafluoroethylene) (PTFE) and polymethyl methacrylate (PMMA) surface were carried out for the systems containing ternary mixtures of surfactants composed of: p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycols), Triton X-100 (TX100), Triton X-165 (TX165) and Triton X-114 (TX114), and fluorocarbon surfactants, Zonyl FSN100 (FSN100) and Zonyl FSO100 (FSO100). The aqueous solutions of ternary surfactant mixtures were prepared by adding TX114, FSN100 or FSO100 to binary mixtures of TX100+TX165, where the synergistic effect in the reduction of the surface tension of water (γ(LV)) was determined. From the obtained contact angle values, the relationships between cosθ, the adhesion tension and surface tension of solutions, cosθ and the reciprocal of the surface tension were determined. On the basis of these relationships, the correlation between the critical surface tension of PTFE and PMMA wetting and the surface tension of these polymers as well as the work of adhesion of aqueous solutions of ternary surfactant mixtures to PTFE and PMMA surface were discussed. The critical surface tension of PTFE and PMMA wetting, γ(C), determined from the contact angle measurements of aqueous solutions of surfactants including FSN100 or FSO100 was also discussed in the light of the surface tension changes of PTFE and PMMA under the influence of film formation by fluorocarbon surfactants on the surface of these polymers. The γ(C) values of the studied polymeric solids were found to be different for the mixtures composed of hydrocarbon surfactants in comparison with those of hydrocarbon and fluorocarbon surfactants. In the solutions containing fluorocarbon surfactants, the γ(C) values were different taking into account the contact angle in the range of FSN100 and FSO100 concentration corresponding to their unsaturated monolayer at water-air interface or to that saturated.  相似文献   

15.
Measurements of the advancing contact angle (theta) were carried out for an aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol)s (Triton X-100 (TX100) and Triton X-165 (TX165) mixtures) on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactant mixture. The minimum of the dependence between the contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of TX100, alpha = 0.8, points to synergism in the wettability of PTFE. This effect was confirmed by the negative values of interaction parameters calculated on the basis of the contact angle and by the Rosen approach. In contrast to Zisman, there was no linear dependence between cos theta and the surface tension of an aqueous solution of TX100 and TX165 mixtures for all studied systems, but a linear dependence existed between the adhesional tension and surface tension for PTFE over the whole concentration range, the slope of which was -1, indicating that the surface excess of the surfactant concentration at the PTFE-solution interface was the same as that at the solution-air interface for a given bulk concentration. Similar values of monomer mole fractions of the surfactants at water-air and PTFE-water interfaces calculated on the basis of the surface tension and contact angles showed that adsorption at these two interfaces was the same. It was also found that the work of adhesion of an aqueous solution of surfactants to the PTFE surface did not depend on the type of surfactant and its concentration. This means that for the studied systems the interaction across the PTFE-solution interface was constant and was largely of Lifshitz-van der Waals type. On the basis of the surface tension of PTFE, the Young equation, and the thermodynamic analysis of the adhesion work of an aqueous solution of surfactant to the polymer surface, it was found that in the case of PTFE the changes in the contact angle as a function of the mixture concentration of two nonionic surfactants resulted only from changes in the polar component of the solution surface tension.  相似文献   

16.
Sulphur hexafluoride (SF(6)) plasma treatments and hexamethyl disiloxane (HMDSO) plasma polymerisation were performed on poly(ethylene terephthalate) (PET) meshes and the resulting wettability against liquids having very different surface tensions were investigated at the light of a possible use of the materials in the fuel/water separation technology. Surface modification of the meshes owing to HMDSO plasma polymerisation followed by SF(6) plasma treatment was also investigated. Hydrophobic performances were characterised refining the conventional Wilhelmy dynamic contact angle (DCA) technique, using several reference solutions having the surface tension values between 20-72 mN/m. Measurements of the water intrusion pressure (WIP) of the treated samples were also performed. Surface modifications on the plasma treated meshes were investigated by means of Fourier-transform infrared absorption spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. SF(6) and HMDSO plasma treatments decrease the surface energy of the PET meshes, lowering the liquid surface tension at which the wettable/unwettable transition occurs and increasing the WIP. Moreover, an increase in hydrophobic performances was achieved with HMDSO plasma polymerisation followed by SF(6) plasma treatment.  相似文献   

17.
Advancing contact angle (theta) measurements were carried out for aqueous solutions of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) mixtures on polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA). The obtained results indicate that the wettability of PTFE and PMMA by aqueous solutions of CTAB and CPyB mixtures depends on the composition and concentration of the mixture; however, synergism in the wettability does not exist. In the range of low concentrations of aqueous solution mixtures there is a linear dependence between the contact angle and composition of the mixtures, but at a concentration close to CMC a deviation from linear dependence is observed. In contrast to Zisman, there is no linear dependence between costheta and the surface tension of aqueous solution of CTAB and CPyB mixtures, but a linear dependence exists between the adhesional and surface tension, and these lines have a slope -1 and -0.34 for PTFE and PMMA, respectively, which suggests that adsorption of CTAB and CPyB mixtures at water-air and PTFE-water is the same, and the orientation of the CTAB and CPyB molecules at both interfaces in the saturated monolayer should also be the same. Adsorption of these mixtures at water-air interface is considerably higher than at PMMA-water interface, and CTAB and CPyB molecules should be parallelly oriented to PMMA surface in the saturated monolayer. Extrapolation of the straight lines to the points corresponding to the surface tension of aqueous solution, which completely spreads over the PTFE and PMMA surface, gives a critical surface tension of wetting equal to 23.44 and 33.13 mN/m, respectively. The value of 23.44 mN/m is higher than that of the surface tension of PTFE, but the value of 33.13 is lower than that of Lifshitz-van der Waals components of PMMA surface tension. On the basis of the critical surface tension, the surface tension of PTFE and PMMA, the Young equation, and thermodynamic analysis of the adhesion work of aqueous solution of surfactant to polymer surface, it was found that for PTFE and PMMA the changes of the contact angle of aqueous solution of two cationic surfactants mixtures on their surfaces as a function of the solution concentration resulted only from the decrease of the polar component of the solution surface tension.  相似文献   

18.
We consider theoretically liquid rise against gravity in capillaries with height-dependent cross-sections. For a conical capillary made from a hydrophobic surface and dipped in a liquid reservoir, the equilibrium liquid height depends on the cone-opening angle alpha, the Young-Dupré contact angle theta, the cone radius at the reservoir's level R(0), and the capillary length kappa(-)(1). As alpha is increased from zero, the meniscus' position changes continuously until, when alpha attains a critical value, the meniscus jumps to the bottom of the capillary. For hydrophilic surfaces the meniscus jumps to the top. The same liquid height discontinuity can be achieved with electrowetting with no mechanical motion. Essentially the same behavior is found for two tilted surfaces. We further consider capillaries with periodic radius modulations and find that there are few competing minima for the meniscus location. A transition from one to another can be performed by the use of electrowetting. Finite pressure difference between the two sides of the liquids can be incorporated as well, resulting in complicated phase-diagrams in the alpha-theta plane. The phenomenon discussed here may find uses in microfluidic applications requiring the transport small amounts of water "quanta" (volume < 1 nL) in a regular fashion.  相似文献   

19.
Measurements of the advancing contact angle (theta) were carried out for aqueous solution of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycol), Triton X-100 (TX100) mixtures on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactants mixture. There is a minimum of the dependence between contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of CTAB, alpha, equal 0.2, which points to the synergism in the wettability of PTFE. In contrast to Zisman, there is no linear dependence between costheta and the surface tension of aqueous solution of CTAB and TX100 mixtures for all studied systems, but a linear dependence exists between the adhesional tension and surface tension for PTFE in the whole concentration range, the slope of which is -1, that suggests that the surface excess of the surfactant concentration at the PTFE-solution interface is the same as that at the solution-air interface for a given bulk concentration. It was also found that the work of adhesion of aqueous solution of surfactants to PTFE surface did not depend on the type of surfactant and its concentration. It means that the interactions across PTFE-solution interface were constant for the systems studied, and they were largely Lifshitz-van de Waals type. On the basis of the surface tension of PTFE and the Young equation and thermodynamic analysis of the adhesion work of aqueous solution of surfactant to the polymer surface it was found that in the case of PTFE the changes of the contact angle as a function of the mixture of nonionic and cationic surfactants concentration resulted only from changes of the polar component of solution surface tension.  相似文献   

20.
In the Young equation, only two of the four unknowns are measurable. They are the liquid interfacial tension sigma lv and the contact angle theta. To solve this equation, another correlation is required. In solving this equation, a better understanding of the magnitude of the solid interfacial tension sigma sv and the solid-liquid interfacial tension sigma sl is expected. The possibility of a theoretical estimation of the contact angle theta is sought as an alternative to the experimental method. In this paper, an attempt to calculate the solid interfacial tension sigma sv is reported. It is based on the intermolecular interaction which is mathematically described in the parameter Phi sl according to Good. The calculated sigma sv values for PTFE, steel, and glass surrounded by dense carbon dioxide are verified by comparing those values obtained from aqueous and ethanolic systems. Furthermore, the solid interfacial tension sigma sv is also used to forecast the water drop contact angle theta. The calculated values are compared with the experimental measured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号