首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production planning (PP) is one of the most important issues carried out in manufacturing environments which seeks efficient planning, scheduling and coordination of all production activities that optimizes the company’s objectives. In this paper, we studied a two-stage real world capacitated production system with lead time and setup decisions in which some parameters such as production costs and customer demand are uncertain. A robust optimization model is developed to formulate the problem in which minimization of the total costs including the setup costs, production costs, labor costs, inventory costs, and workforce changing costs is considered as performance measure. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. A mixed-integer programming (MIP) model is developed to formulate the related robust production planning problem. In fact the robust proposed model is presented to generate an initial robust schedule. The performance of this schedule could be improved against of any possible occurrences of uncertain parameters. A case from an Iran refrigerator factory is studied and the characteristics of factory and its products are discussed. The computational results display the robustness and effectiveness of the model and highlight the importance of using robust optimization approach in generating more robust production plans in the uncertain environments. The tradeoff between solution robustness and model robustness is also analyzed.  相似文献   

2.
Parallel processors for planning under uncertainty   总被引:1,自引:0,他引:1  
Our goal is to demonstrate for an important class of multistage stochastic models that three techniques — namely nested decomposition, Monte Carlo importance sampling, and parallel computing — can be effectively combined to solve this fundamental problem of large-scale linear programming.  相似文献   

3.
This paper studies the berth allocation problem (BAP) under uncertain arrival time or operation time of vessels. It does not only concern the proactive strategy to develop an initial schedule that incorporates a degree of anticipation of uncertainty during the schedule’s execution, but also studies the reactive recovery strategy which adjusts the initial schedule to handle realistic scenarios with minimum penalty cost of deviating from the initial schedule. A two-stage decision model is developed for the BAP under uncertainties. Moreover, a meta-heuristic approach is proposed for solving the above problem in large-scale realistic environments. Numerical experiments are conducted to validate the effectiveness and efficiency of the proposed method.  相似文献   

4.
《Optimization》2012,61(1-4):163-195
In order to reduce large online measurement and correction expenses, the a priori informations on the random variations of the model parameters of a robot and its working environment are taken into account already at the planning stage. Thus, instead of solving a deterministic path planning problem with a fixed nominal parameter vector, here, the optimal velocity profile along a given trajectory in work space is determined by using a stochastic optimization approach. Especially, the standard polygon of constrained motion-depending on the nominal parameter vector-is replaced by a more general set of admissible motion determined by chance constraints or more general risk constraints. Robust values (with respect to stochastic parameter variations) of the maximum, minimum velocity, acceleration, deceleration, resp., can be obtained then by solving a univariate stochastic optimization problem Considering the fields of extremal trajectories, the minimum-time path planning problem under stochastic uncertainty can be solved now by standard optimal deterministic path planning methods  相似文献   

5.
We consider aggregation of products with similar characteristics in a two-level hierarchical production planning model. A robust aggregate plan at the upper level is such that, at the lower level, a disaggregation policy exists even when detailed demands may vary within some given bounds. We provide necessary and sufficient conditions for the robustness of an aggregate plan and obtain a closed form expression of these conditions. A set of more manageable sufficient conditions is also presented.Institut National des Sciences Appliquées de Toulouse.  相似文献   

6.
This research studies multi-generation capacity portfolio planning problems under various uncertainty factors. These uncertainty factors include price uncertainties, demand fluctuation and uncertain product life cycle. The objective of this research is to develop an efficient algorithm that generates capacity portfolio policies robust to aforementioned uncertainties.  相似文献   

7.
Location planning for urban distribution centers is vital in saving distribution costs and minimizing traffic congestion arising from goods movement in urban areas. In this paper, we present a multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. The proposed approach involves identification of potential locations, selection of evaluation criteria, use of fuzzy theory to quantify criteria values under uncertainty and application of fuzzy TOPSIS to evaluate and select the best location for implementing an urban distribution center. Sensitivity analysis is performed to determine the influence of criteria weights on location planning decisions for urban distribution centers.The strength of the proposed work is the ability to deal with uncertainty arising due to a lack of real data in location planning for new urban distribution centers. The proposed approach can be practically applied by logistics operators in deciding on the location of new distribution centers considering the sustainable freight regulations proposed by municipal administrations. A numerical application is provided to illustrate the approach.  相似文献   

8.
Robust optimization approaches have been widely used to address uncertainties in radiation therapy treatment planning problems. Because of the unknown probability distribution of uncertainties, robust bounds may not be correctly chosen, and a risk of undesirable effects from worst-case realizations may exist. In this study, we developed a risk-based robust approach, embedded within the conditional value-at-risk representation of the dose-volume constraint, to deal with tumor shrinkage uncertainty during radiation therapy. The objective of our proposed model is to reduce dose variability in the worst-case scenarios as well as the total delivered dose to healthy tissues and target dose deviations from the prescribed dose, especially, in underdosed scenarios. We also took advantage of adaptive radiation therapy in our treatment planning approach. This fractionation technique considers the response of the tumor to treatment up to a particular point in time and reoptimizes the treatment plan using an estimate of tumor shrinkage. The benefits of our model were tested in a clinical lung cancer case. Four plans were generated and compared: static, nominal-adaptive, robust-adaptive, and conventional robust (worst-case) optimization. Our results showed that the robust-adaptive model, which is a risk-based model, achieved less dose variability and more control on the worst-case scenarios while delivering the prescribed dose to the tumor target and sparing organs at risk. This model also outperformed other models in terms of tumor dose homogeneity and plan robustness.  相似文献   

9.
Textile manufacturing consists of yarn production, fabric formation, and finishing and dyeing stages. The subject of this paper is the yarn production planning problem, although the approach is directly applicable to the fabric production planning problem due to similarities in the respective models. Our experience at an international textile manufacturer indicates that demand uncertainty is a major challenge in developing yarn production plans. We develop a stochastic programming model that explicitly includes uncertainty in the form of discrete demand scenarios. This results in a large-scale mixed integer model that is difficult to solve with off-the-shelf commercial solvers. We develop a two-step preprocessing algorithm that improves the linear programming relaxation of the model and reduces its size, consequently improving the computational requirements. We illustrate the benefits of a stochastic programming approach over a deterministic model and share our initial application experience.  相似文献   

10.
This study deals with a hierarchical planning system that is used for planning of a single-stage manufacturing system. We consider two decision levels, aggregate and detailed planning, and formulate a model for evaluation of aggregate plans and optimal disaggregation in case of independent stochastic demand. It is shown how the optimal solution can be obtained with the aid of a dynamic programming algorithm. Furthermore, we give conditions that will guarantee optimality of a simple intuitive disaggregation rule.  相似文献   

11.
Enterprises often implement a measurement system to monitor their march towards their strategic goals. Although this way it is possible to assess the progress of each goal, there is no structured way to reconsider resource allocation to those goals and to plan an optimal (or near optimal) allocation scheme. In this study we propose a genetic approach to match each goal with an autonomous entity (agent) with a specific resource sharing behavior. The overall performance is evaluated through a set of functions and genetic algorithms are used to eventuate in approximate optimal behavior’s schemes. To outline the strategic goals of the enterprise we used the balanced scorecard method. Letting agents deploy their sharing behavior over simulation time, we measure the scorecard’s performance and detect distinguished behaviors, namely recommendations for resource allocation.  相似文献   

12.
This research is motivated by issues faced by a large manufacturer of semiconductor devices. Semiconductor manufacturing companies allocate millions of dollars every year for new types of machine tools for their facilities. Typically these are special purpose machine tools which are made to order. The rate of change in products and technology makes it difficult for manufacturers to have a good estimate of future tool requirements. Further, manufacturers experience a long lead time while procuring these tools. In this paper, we model the tool capacity planning problem under uncertainty in demand. The number of tools required in a facility is sufficiently large (nearly hundred or more tools) to make it nearly impossible to obtain efficient exact algorithms. We provide heuristics to find efficient tool procurement plans and test their quality using lower bounds on the formulation.  相似文献   

13.
Many strategic decisions in business are made in a context which the decision makers perceive as uncertain, complex and opaque. A method, based on Rhyne's field anomaly relaxation technique, is described of generating a network of states which characterise the environment or context in which strategic decisions are to be made. These states represent possible future conditions for the business, and knowledge of them allows improved strategic understanding and decision making to be achieved. This paper describes the method, using a representative real-life application to illustrate the process.  相似文献   

14.
We address a multi-category workforce planning problem for functional areas located at different service centres, each having office-space and recruitment capacity constraints, and facing fluctuating and uncertain workforce demand. A deterministic model is initially developed to deal with workforce fluctuations based on an expected demand profile over the horizon. To hedge against the demand uncertainty, we also propose a two-stage stochastic program, in which the first stage makes personnel recruiting and allocation decisions, while the second stage reassigns workforce demand among all units. A Benders’ decomposition-based algorithm is designed to solve this two-stage stochastic mixed-integer program. Computational results based on some practical numerical experiments are presented to provide insights on applying the deterministic versus the stochastic programming approach, and to demonstrate the efficacy of the proposed algorithm as compared with directly solving the model using its deterministic equivalent.  相似文献   

15.
We provide a characterization in terms of Fatou closedness for weakly closed monotone convex sets in the space of \({\mathcal P}\)-quasisure bounded random variables, where \({\mathcal P}\) is a (possibly non-dominated) class of probability measures. Applications of our results lie within robust versions the Fundamental Theorem of Asset Pricing or dual representation of convex risk measures.  相似文献   

16.
This paper considers a firm's salesforce contracting problem under model uncertainty. Based on the notion of multiplier preferences, we capture model uncertainty and explicitly characterize the structure of the optimal contract. Our findings provide guidelines on the design of salesforce compensation contracts in practical situations.  相似文献   

17.
In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm.  相似文献   

18.
Many individuals suffering from food insecurity obtain assistance from governmental programs and nonprofit agencies such as food banks. Much of the food distributed by food banks come from donations which are received from various sources in uncertain quantities at random points in time. This paper presents a model that can assist food banks in distributing these uncertain supplies equitably and measure the performance of their distribution efforts. We formulate this decision problem as a discrete-time, discrete state Markov decision process that considers stochastic supply, deterministic demand and an equity-based objective. We investigate three different allocation rules and describe the optimal policy as a function of available inventory. We also provide county level estimates of unmet need and determine the probability distribution associated with the number of underserved counties. A numerical study is performed to show how the allocation policy and unmet need are impacted by uncertain supply and deterministic, time-varying demand. We also compare different allocation rules in terms of equity and effectiveness.  相似文献   

19.
In the municipal solid waste (MSW) management system, there are many uncertainties associated with the coefficients and their impact factors. Uncertainties can be normally presented as both membership functions and probabilistic distributions. This study develops a scenario-based fuzzy-stochastic quadratic programming (SFQP) model for identifying an optimal MSW management policy and for allowing dual uncertainties presented as probability distributions and fuzzy sets being communicated into the optimization process. It can also reflect the dynamics of uncertainties and decision processes under a complete set of scenarios. The developed method is applied to a case study of long-term MSW management and planning. The results indicate that reasonable solutions have been generated. They are useful for identifying desired waste-flow-allocation plans and making compromises among system cost, satisfaction degree, and constraint-violation risk.  相似文献   

20.
This paper describes a two-stage strategic planning model for determining the optimal R&D portfolio in the presence of both exploratory and developmental research projects. An example is illustrated in the context of energy research. Research portfolios are analysed using a Bayesian approach in which probability assessments are updated as new information generated by exploratory research becomes available. Useful insights are obtained through sensitivity analysis. It is found that exploratory research tends to exhibit a lumpy characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号