首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We report on ionoluminescence investigations of porous Si prepared from the p+-type Si, which exhibited, after prolonged ambient air exposure, moderate photon emission with a maximum in the red–orange region. In an attempt to activate a shorter wavelength emission, the samples were implanted with 225 keV O+ ions at the dose of 1×1017 cm−2. The strong blue band at 2.7 eV, well known in silica, has emerged in the ionoluminescence spectra following the oxygen implantation. The results of the comparative ionoluminescence experiments, performed on both porous Si and two forms of silica, show the important role of SiO2 defect-related states in ion-induced optical emission from porous Si.  相似文献   

2.
We have realized distributed Bragg reflectors and microcavities with a remarkable optical quality (Rmax.=99.5% at 850 nm, FWHM=5 nm at 772 nm) with low doped p-type silicon. This is due to a strong decrease of the porous Si/bulk Si interface roughness that was obtained by low-temperature anodization. The properties of porous silicon microcavities are investigated by photoluminescence and reflection measurements. We also have filled porous silicon with Rhodamine 800 dye. The spontaneous emission spectrum of the optically excited Rhodamine 800 is drastically modified by microcavity effect: the peak emission intensity is increased, the line width is narrowed. The results demonstrate that using all porous silicon or dye-filled microcavities provides new possibilities to improve the properties of photonic devices.  相似文献   

3.
Erbium doping of silicon has recently emerged as a promising method to tailor the optical properties of Si towards the achievement of a light emission at 1.54 μm. In this paper we will review our recent work on this subject. In particular a detailed investigation of the non-radiative processes, competing with the radiative emission of Er in Si will be presented. Among these processes, an Auger de-excitation with the energy released to free carriers will be demonstrated to be extremely efficient, with an Auger coefficient CA4.4×10−13 cm3/s. Moreover, at temperatures above 100 K a phonon-assisted back-transfer decay process, characterized by an activation energy of 0.15 eV is seen to set in. This understanding of the physical properties competing with the radiative light emission allowed us to control them and obtain efficient room temperature luminescence. Two examples will be reported. It will be shown that by exciting Er within the depletion region of reverse biased p+n+ Si diodes in the breakdown regime it is possible to avoid Auger quenching and to achieve high efficiency. Moreover, at the switch off of the diode, when the depletion region shrinks, the excited Er ions become suddenly embedded within the neutral heavily doped region of the device. In this region Auger de-excitation with free carriers sets in and quenches rapidly the luminescence. This allows to modulate the light signal at frequencies as high as a few MHz. Furthermore, the introduction of Er within Si nanocrystals is demonstrated to be a promising way to eliminate back-transfer processes by a widening of the bandgap while maintaining the full advantage of the efficient electron-hole mediated excitation present in Si. These data are presented and future perspective discussed.  相似文献   

4.
We present extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) analyses of Er–O and Er–F co-doped Si. Samples were prepared by multiple implants at 77 K of Er and co-dopant (O or F) ions resulting in the formation of a2 μm thick amorphous layer uniformly doped with 1×1019 Er/cm3 and 3×1019 O/cm3, 1×1020 O/cm3 or 1×1020 F/cm3. EXAFS measurements show that the local environment of the Er sites in the amorphous layers consists of 6 Si first neighbors. After epitaxial regrowth at 620°C for 3 h, Er is fully coordinated with 8 F ions in the Er–F samples, while Si and O ions are concomitantly present in the first shell of O co-doped samples. Post regrowth thermal treatments at 900°C leave the coordination unchanged in the Er+F, while the Er+O (ratio 1 : 10) doped samples present Er sites with a fully O coordinated shell with an average of 5 O atoms and 4 O atoms after 30 s and 12 h, respectively. We have also found that the fine structure and intensity of the high-resolution PL spectra are strongly dependent on the Er-impurity ratio and on thermal process parameters in the Er–O co-doped samples, while this is not observed for the F-doped samples. The most intense PL response at 15 K was obtained for the 1 : 3 E : O ratio, suggesting that an incomplete O shell around Er is particularly suitable for optical excitation.  相似文献   

5.
实验中测量了0.38V_(Bohr)(460 keV)高电荷态Xe~(q+)(4≤q≤20)离子轰击高纯Ni表面发射的400-510 nm光谱.实验结果包括NiⅠ原子谱线,NiⅡ离子谱线,以及入射离子中性化发射的XeⅠ,XeⅡ和XeⅢ谱线.研究了谱线XeⅡ410.419,XeⅢ430.444,XeⅡ434.200,XeⅡ486.254,NiⅠ498.245,NiⅠ501.697,NiⅠ503.502,NiⅠ505.061和NiⅠ508.293 nm的光子产额随着入射离子电荷态的变化.结果表明,入射离子中性化和溅射Ni原子发射谱线的光子产额随着入射离子电荷态的增加而增加,其趋势与入射离子势能一致.  相似文献   

6.
We present a systematic study on ultrathin porous silicon (PS) layers (40–120 nm) of different porosities, formed by electrochemical etching and followed by thermal oxidation treatment (300°C and 600°C) and by electrochemical oxidation. The oxidised and non-oxidised PS layers have been analysed by spectroscopic reflectometry (SR), spectroscopic ellipsometry (SE) and secondary ion mass spectroscopy (SIMS). The SR and SE spectra were fitted by a multiparameter fit program and the composition and the thickness of the PS layers were evaluated by different optical models. PS layers, formed electrochemically in the outermost layer of a p/n+ monocrystalline silicon junction were successfully evaluated using a gradient porosity optical model. The non-oxidised PS, formed in p-type silicon, can be well described by a simple optical model (one-layer of two-components, silicon and voids). The spectra of the oxidised PS layers can be fitted better using an optical model with three interdependent components (crystalline-silicon, silicon-dioxide, voids). The SIMS results give a strong support for the optical model used for SR and SE.  相似文献   

7.
Thermally grown SiO2 layers on Si substrates implanted with Si+ ions with a dose of 6×1016 cm−2 were studied by the techniques of photoluminescence, electron paramagnetic resonance (EPR), and low-frequency Raman scattering. Distinct oxygen-vacancy associated defects in SiO2 and non-bridging oxygen hole centers were identified by EPR. The luminescence intensity in the 620 nm range was found to correlate with the number of these defects. The low-frequency Raman scattering technique was used to estimate the average size of the Si nanocrystallites formed after the implantation and thermal annealing at T>1100°C, which are responsible for the photoluminescence band with a maximum at 740 nm. The intensity of this band can be significantly enhanced by an additional treatment of the samples in a low-temperature RF plasma.  相似文献   

8.
利用磁控溅射在重掺硼硅(p+-Si)衬底上分别沉积TiO2薄膜和掺硼的TiO2(Ti O2∶B)薄膜,并经过氧气氛下600℃热处理,由此形成相应的TiO2/p+-Si和TiO2∶B/p+-Si异质结。与Ti O2/p+-Si异质结器件相比,TiO2∶B/p+-Si异质结器件的电致发光有明显的增强。分析认为:TiO2∶B薄膜经过热处理后,B原子进入TiO2晶格的间隙位,引入了额外的氧空位,而氧空位是TiO2/p+-Si异质结器件电致发光的发光中心,所以上述由B掺杂引起的氧空位浓度的增加是TiO2∶B/p+-Si异质结器件电致发光增强的原因。  相似文献   

9.
The Co-sublattice anisotropy in Lu2Co17 consists of four competitive contributions from Co atoms at crystallographically different sites in the Th2Ni17-type of crystal structure, which result in the appearance of a spontaneous spin-reorientation transition (SRT) from the easy plane to the easy axis at elevated temperatures. In order to investigate this SRT in detail and to study the influence of Si substitution for Co on the magnetic anisotropy, magnetization measurements were performed on single crystals of Lu2Co17−xSix (x=0−3.4) grown by the Czochralski method. The SRT in Lu2Co17 was found to consist of two second-order spin reorientations, “easy-plane”–“easy-cone” at TSR1≈680 K and “easy-cone”–“easy-axis” at TSR2≈730 K. Upon Si substitution for Co, both SRTs shift toward the lower temperatures in Lu2Co16Si (TSR1≈75 K and TSR2≈130 K) with the further onset of the uniaxial type of magnetic anisotropy in the whole range of magnetic ordering for Lu2Co17−xSix compounds with x>1 due to a weakening of the easy-plane contribution from the Co atoms at the 6g and 12k sites to the total anisotropy.  相似文献   

10.
A complete inspection of the capabilities of reflectance anisotropy spectroscopy (RAS) in studying the adsorption of molecules or atoms on the Si(0 0 1)-(2 × 1) surface is presented. First, a direct comparison between RA spectra recorded on the clean Si(0 0 1)-(2 × 1) and the corresponding topography of the surface obtained using scanning tunneling microscopy (STM) allows us to quantify the mixing of the two domains that are present on the surface. Characteristic RA spectra recorded for oxygen, hydrogen, water, ethylene, benzene are compared to try to elucidate the origin of the optical structures. Quantitative and qualitative information can be obtained with RAS on the kinetics of adsorption, by monitoring the RA signal at a given energy versus the dose of adsorbate; two examples are presented: H2/Si(0 0 1) and C6H6/Si(0 0 1). Very different behaviours in the adsorption processes are observed, making of this technique a versatile tool for further investigations of kinetics.  相似文献   

11.
In2S3 layers have been grown by close-spaced evaporation of pre-synthesized In2S3 powder from its constituent elements. The layers were deposited on glass substrates at temperatures in the range, 200–350 °C. The effect of substrate temperature on composition, structure, morphology, electrical and optical properties of the as-grown indium sulfide films has been studied. The synthesized powder exhibited cubic structure with a grain size of 63.92 nm and S/In ratio of 1.01. The films grown at 200 °C were amorphous in nature while its crystallinity increased with the increase of substrate temperature to 300 °C. The films exhibited pure tetragonal β-In2S3 phase at the substrate temperature of 350 °C. The surface morphological analysis revealed that the films grown at 300 °C had an average roughness of 1.43 nm. These films showed a S/In ratio of 0.98 and a lower electrical resistivity of 1.28 × 103 Ω cm. The optical band gap was found to be direct and the layers grown at 300 °C showed a higher optical transmittance of 78% and an energy band gap of 2.49 eV.  相似文献   

12.
The decrease in luminescence from host porous silicon (PS) by thermal annealing prevents the optical activation of Er ions. We prepared a SiN layer on erbium-doped porous silicon (PS : Er) as the capping layer by photo-chemical vapor deposition (photo-CVD). After deposition of SiN, the sample was annealed in pure Ar atmosphere for optical activation. We observed an Er-related emission at 1532 nm with a full-width at half-maximum (FWHM) of 10 nm at 18 K from the sample with the SiN layer. In contrast, no emission was observed from the sample without the SiN layer. At 300 K, the peak intensity of Er3+-related photoluminescence (PL) for the sample annealed at 1100°C decreased to 40.0% of that observed at 18 K. From these results, it was found that the SiN layer on PS:Er is useful for both host PS and Er-related 1.5 μm luminescences.  相似文献   

13.
The results of Raman scattering and X-ray diffraction studies of thick, free-standing, porous Si layers with thickness up to 500 μm are presented. The Raman scattering spectra have a distinctive difference from previous data for porous Si films on Si substrate and for thin, free-standing, porous Si layers. The experimental data can be explained by a modified phonon confinement model that accounts for a comprehensive strained Si nanocrystal. The comprehensive strain is a tensile one, and the value of stress can be up to 3 GPa. This interpretation is supported by data of X-ray diffraction measurements.  相似文献   

14.
We report on a generalized approach for the calculation of optical properties of various porous semiconductors. The presented methodology provides a simple method for predicting the type and value of optical anisotropy in different materials. Specifically, the cases of electrochemically etched mesoporous Si on (110)-oriented substrate and electrochemically-etched porous InP and GaAs materials on (100) substrates are considered. The optical anisotropy of mesoporous Si is explained and the dependence of the optical birefringence of this material on various material parameters is obtained. The optical anisotropy of porous InP and GaAs with crystallographic pores is predicted based on the presented model. PACS 78.20.-e; 78.20.Bh; 78.20.Ci; 78.20.Fm; 78.30.Fs;78.55.Mb  相似文献   

15.
Employing Si 2p and O 1s photoemission spectroscopy using monochromated synchrotron radiation and the supersonic molecular beam technique, we have performed real time in situ observations of oxidation states on Si(0 0 1)-2×1 at room temperature. High-resolution Si 2p photoemission spectra, which unambiguously resolve oxide components [Si1+, Si2+, Si3+ and Si4+], were successfully measured requiring only 43 s per spectrum. We found that the Si4+ species gradually increases to reach the oxide thickness of 0.57 nm just after the saturation of Si1+, Si2+ and Si3+ species with a translational energy of 2.9 eV.  相似文献   

16.
Si δ-doped GaAs layers were studied by micro-Raman spectroscopy. The spectra were recorded along the bevelled structure using the light of Ar+-ion laser (514.5 nm line) with high power density. The observed changes in the Raman spectra are discussed in the sense of coupling present between LO phonon and photoexcited electron–hole plasma and plasma of electrons arising from ionised Si atoms. Plasmon-LO-Phonon modes of the coupling of photoexcited plasma in δ-doped GaAs layers were observed for the first time. The minimal thickness of cap layer was estimated in the range of 10–19 nm depending on the doping concentration.  相似文献   

17.
Narrow photoluminescence peaks with a full-width at half-maximum of 14–20 nm are obtained from porous silicon microcavities (PSM) fabricated by the electrochemical etching of a Si multilayer grown by molecular beam epitaxy. The microcavity structure contains an active porous silicon layer sandwiched between two distributed porous silicon Bragg reflectors; the latter were fabricated by etching a Si multilayer doped alternatively with high and low boron concentrations. The structural and optical properties of the PSMs are characterised by scanning electron microscopy and photoluminescence (PL). The wavelength of the narrow PL peaks could be tuned in the range of 700–810 nm by altering the optical constants.  相似文献   

18.
M. B. Raschke  P. Bratu  U. H  fer 《Surface science》1998,410(2-3):351-361
The isothermal desorption of SiO from the Si(100) and Si(111) surfaces was investigated by means of optical second-harmonic generation (SHG). Due to the high adsorbate sensitivity of this method, desorption rates could be measured over a wide range from 10−1 to 10−6 ML s−1. From their temperature dependence between 780 and 1000 K, activation energies of EA=3.4±0.2 eV and EA=4.0±0.3 eV and pre-exponential factors of ν0=1016±1 s−1 and ν0=1020±1 s−1 for SiO desorption were obtained for Si(100) and Si(111), respectively. In the case of the Si(100) surface, a pronounced decrease of the first-order rate constants was observed upon increasing the initial coverage from 0.02 to 0.6 ML. The results are interpreted in terms of coverage-dependent oxygen-binding configurations, which influence the stability of the oxide layer.  相似文献   

19.
We reported for what is to be believed the first time a double optical waveguide in a Cu-doped potassium sodium strontium barium niobate (KNSBN) crystal formed by double boron ion implantation. The energy and dose of B+ and B3+ ions were (3+6) MeV and (2+2)×1014 ions/cm2, respectively. The refractive index profile of the waveguide showed a double-barrier confined shape, which suggested the formation of a two-layer waveguide structure. The two waveguide layers were with thickness of 2.6 and 2 μm, respectively, which was in a good agreement with the parameters obtained from transport and range of ions in matter 98 (TRIM) code simulation. The nuclear energy loss distribution of the MeV B ions implanted into this crystal had a similar shape to that of the waveguide index profile, which means an inherent relationship between the waveguide formation and the energetic energy deposition.  相似文献   

20.
Strong blue and violet photo (PL) and electroluminescence (EL) at room temperature was obtained from SiO2-films grown on crystalline Si, which were either single (SI) or double implanted (DI) with Ge ions and annealed at different temperatures. The PL spectra of Ge-rich layers reach a maximum after annealing at 500–700°C for DI layers or 900–1000°C for SI layers, respectively. Both, PL and EL of 500 nm thick Ge-rich layers are easily visible by the naked eye at ambient light due to their high intensity. Based on excitation spectra we tentatively interpret the blue PL as due to the oxygen vacancy in silicon dioxide.

The EL spectrum of the Ge-implanted oxide correlates very well with the PL one and shows a linear dependence on the injected current over three orders of magnitude. For DI layers much higher injection currents than for SI layers can be achieved. An EL efficiency in the order of 10−4 for Ge+-implanted silicon dioxide was determined.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号