首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension.  相似文献   

2.
It is well known that rational interpolation sometimes gives better approximations than polynomial interpolation, especially for large sequences of points, but it is difficult to control the occurrence of poles. In this paper we propose and study a family of barycentric rational interpolants that have no real poles and arbitrarily high approximation orders on any real interval, regardless of the distribution of the points. These interpolants depend linearly on the data and include a construction of Berrut as a special case.  相似文献   

3.
The aim of this paper is to present a new class of B-spline-like functions with tension properties. The main feature of these basis functions consists in possessing C3C3 or even C4C4 continuity and, at the same time, being endowed by shape parameters that can be easily handled. Therefore they constitute a useful tool for the construction of curves satisfying some prescribed shape constraints. The construction is based on a geometric approach which uses parametric curves with piecewise quintic components.  相似文献   

4.
We derive error estimates in W2,∞-semi-norms for multivariate discrete D2-splines that interpolate an unknown function at the vertices of given triangulations. These results are widely based on the construction of approximation operators and linear projectors onto piecewise polynomial spaces having weakly stable local bases.  相似文献   

5.
Summary A method for the construction of a set of data of interpolation in several variables is given. The resulting data, which are either function values or directional derivatives values, give rise to a space of polynomials, in such a way that unisolvence is guaranteed. The interpolating polynomial is calculated using a procedure which generalizes the Newton divided differences formula for a single variable.  相似文献   

6.
The purpose of this paper is to develop piecewise complementary Lidstone interpolation in one and two variables and establish explicit error bounds for the derivatives in L and L2 norms.  相似文献   

7.
This note is devoted to Lagrange interpolation for continuous piecewise smooth functions. A new family of interpolatory functions with explicit approximation error bounds is obtained. We apply the theory to the classical Lagrange interpolation.  相似文献   

8.
9.
Principal lattices are classical simplicial configurations of nodes suitable for multivariate polynomial interpolation in n dimensions. A principal lattice can be described as the set of intersection points of n + 1 pencils of parallel hyperplanes. Using a projective point of view, Lee and Phillips extended this situation to n + 1 linear pencils of hyperplanes. In two recent papers, two of us have introduced generalized principal lattices in the plane using cubic pencils. In this paper we analyze the problem in n dimensions, considering polynomial, exponential and trigonometric pencils, which can be combined in different ways to obtain generalized principal lattices.We also consider the case of coincident pencils. An error formula for generalized principal lattices is discussed. Partially supported by the Spanish Research Grant BFM2003-03510, by Gobierno de Aragón and Fondo Social Europeo.  相似文献   

10.
In this paper the necessary and sufficient conditions for given data to admit a rational interpolant in k,1 with no poles in the convex hull of the interpolation points is studied. A method for computing the interpolant is also provided.Partially supported by DGICYT-0121.  相似文献   

11.
In this paper, (d+1)-pencil lattices on simplicial partitions in Rd are studied. The barycentric approach naturally extends the lattice from a simplex to a simplicial partition, providing a continuous piecewise polynomial interpolant over the extended lattice. The number of degrees of freedom is equal to the number of vertices of the simplicial partition. The constructive proof of this fact leads to an efficient computer algorithm for the design of a lattice.  相似文献   

12.
13.
Summary The Gregory rule is a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order. In the literature, the methods of constructing the Gregory rule have, in contrast to Newton-Cotes quadrature,not been based on the integration of an interpolant. In this paper, after first characterizing an even-order Gregory interpolant by means of a generalized Lagrange interpolation operator, we proceed to explicitly construct such an interpolant by employing results from nodal spline interpolation, as established in recent work by the author and C.H. Rohwer. Nonoptimal order error estimates for the Gregory rule of even order are then easily obtained.  相似文献   

14.
Spline quasi-interpolants are practical and effective approximation operators. In this paper, we construct QIs with optimal approximation orders and small infinity norms called near-best discrete quasi-interpolants which are based on Ω-splines, i.e. B-splines with octagonal supports on the uniform four-directional mesh of the plane. These quasi-interpolants are exact on some space of polynomials and they minimize an upper bound of their infinity norms depending on a finite number of free parameters. We show that this problem has always a solution, in general nonunique. Concrete examples of such quasi-interpolants are given in the last section.  相似文献   

15.
Error bounds between a nonlinear interpolation and the limit function of its associated subdivision scheme are estimated. The bounds can be evaluated without recursive subdivision. We show that this interpolation is convexity preserving, as its associated subdivision scheme. Finally, some numerical experiments are presented.  相似文献   

16.
We discuss multivariate interpolation with some radial basis function, called radial basis function under tension (RBFT). The RBFT depends on a positive parameter which provides a convenient way of controlling the behavior of the interpolating surface. We show that our RBFT is conditionally positive definite of order at least one and give a construction of the native space, namely a semi-Hilbert space with a semi-norm, minimized by such an interpolant. Error estimates are given in terms of this semi-norm and numerical examples illustrate the behavior of interpolating surfaces.  相似文献   

17.
We propose a new combination of the bivariate Shepard operators (Coman and Trîmbi?a?, 2001 [2]) by the three point Lidstone polynomials introduced in Costabile and Dell’Accio (2005) [7]. The new combination inherits both degree of exactness and Lidstone interpolation conditions at each node, which characterize the interpolation polynomial. These new operators find application to the scattered data interpolation problem when supplementary second order derivative data are given (Kraaijpoel and van Leeuwen, 2010 [13]). Numerical comparison with other well known combinations is presented.  相似文献   

18.
Summary. The main result of this paper is an abstract version of the KowalewskiCiarletWagschal multipoint Taylor formula for representing the pointwise error in multivariate Lagrange interpolation. Several applications of this result are given in the paper. The most important of these is the construction of a multipoint Taylor error formula for a general finite element, together with the corresponding –error bounds. Another application is the construction of a family of error formul? for linear interpolation (indexed by real measures of unit mass) which includes some recently obtained formul?. It is also shown how the problem of constructing an error formula for Lagrange interpolation from a D–invariant space of polynomials with the property that it involves only derivatives which annihilate the interpolating space can be reduced to the problem of finding such a formula for a ‘simpler’ one–point interpolation map. Received March 29, 1996 / Revised version received November 22, 1996  相似文献   

19.
This is the second part of a note on interpolation by real polynomials of several real variables. For certain regular knot systems (geometric or regular meshes, tensor product grids), Neville-Aitken algorithms are derived explicitly. By application of a projectivity they can be extended in a simple way to arbitrary (k+1)-pencil lattices as recently introduced by Lee and Phillips. A numerical example is given.Partially supported by CICYT Res. Grant PS87-0060.Travel Grant Programa Europa 1991, CAI Zaragoza.  相似文献   

20.
In this paper, (d+1)-pencil lattices on simplicial partitions in Rd, which are not simply connected, are studied. It is shown, how the fact that a partition is not simply connected can be used to increase the flexibility of a lattice. A local modification algorithm is developed also to deal with slight partition topology changes that may appear afterwards a lattice has already been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号