首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are given which confirm the structure of the furostanol glycoside from tomato seeds forming wastes of the preserving industry. From a butanolic extract of the seeds ofLycopersicum esculentum Mill. we have isolated the furostanol glycoside tomatoside A (I) the structure of which has been established as 25(S)-5α-furostan-3β,22α,26-triol 26-O-β-D-glucopyranoside 3-O-[O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside]. At the same time, by enzymatic and chemical transformations three new spirostanol glycosides of neotigogenin have been obtained: tomatoside B (III), which is 25(S)-5α-spirostan-3β-ol 3-O-[O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside], 25(S)-5α-spirostan-3β-ol 3-O-[O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside] (V), and 25(S)-5α-spirostan-3β-ol 3-O-β-D-galactopyranoside (IV).  相似文献   

2.
Two new steroid glycosides have been isolated from the leaves of aloe yucca and their structures have been established. Glycosides B and C are tigogenin penta-and hexaosides. Glycoside B, which we have called yuccaloeside B is (25R)-5α-spirostan-3β-ol 3-{[O-β-D-glucopyranosyl-(1→2)]-[O-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside}, and glycoside C, which we have called yuccaloeside C is (25R)-5α-spirostan-3β-ol 3-{[(O-β-D-glucopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→2)]-[O-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside}.  相似文献   

3.
设计合成了2个Globo H四糖衍生物1和2, 将其作为标准样品可用于研究β1,3-葡萄糖醛酸(GlcA)转移酶及GlcA-3-O-硫酸化(Sulfo)转移酶在肿瘤组织内的特异性表达.  相似文献   

4.
The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.  相似文献   

5.
In this paper, the combined techniques of macroporous resin column chromatography and high speed counter-current chromatography were applied for preparative separation of flavonoid triglycosides from the leaves of Actinidia valvata Dunn, a famous Chinese medicinal herb. Twelve kinds of macroporous resins were investigated by adsorption and desorption tests. HPD-300 resin showed the maximum effectiveness and thus was selected for the first cleaning-up, in which 20% ethanol was used to remove the undesired constituents and 60% ethanol to elute the targets. The crude extract was then purified by high speed counter-current chromatography with the solvent system composed of ethyl acetate-n-butanol-water (2:1:3 and 4:1:5, v/v). Three flavonoid triglycosides, namely, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(4-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside and kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(2,4-di-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside, were obtained. The purities of the separated compounds were all over 95% as determined by HPLC area normalization method. Their chemical structures were confirmed by UV, MS, NMR, and the standards.  相似文献   

6.
A new steroid glycoside of the spirostan series — eruboside B (I) — has been isolated from an ethanolic extract of the bulbs ofAllium erubescens C. Koh. In an acid hydrolysate, the aglycone β-chlorogenin (II) and the sugars D-glucose and D-galactose in a ratio of 3:1 have been found. By methylation, partial hydrolysis, and oxidation the structure of the spirostanol (I) has been established as (25R)-5α-spirostan-3β,6β-diol 3-O-{[O-β-D-glucopyranosyl-(1→3)]-[O-β-D-glucopyranosyl-(1→2)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside}.  相似文献   

7.
Two new steroid glycosides of the spirostan series have been isolated from the fruit ofAllium cepa L. (family Liliaceae): alliospirosides C and D. On the basis of chemical transformations and spectral characteristics it has been established that the aglycon of both glycosides is a new steroid sapogenin — cepagenin — having the structure of (24S,25R)-spirost-5-ene-1β,3β,24-triol. Alliospirosides C and D are cepagenin 1-O-[O-α-L-rhamnopyranosyl-(1→2)α-L-arabinopyranoside] and 1-O-[O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranoside], respectively.  相似文献   

8.
A new lignanoside, (7R,8S)-7,8-dihydro-7-(4-hydroxy-3,5-dimethoxyphenyl)-1'-formyl-3'-y-methoxyl-8-hydroxymethylbenzo- furan-4-O-β-D-glucopyranoside (moellenoside A), was isolated from Selaginella moellendorffii Hieron. Its structure was determined by spectroscopic evidences. 2007 Wei Sheng Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

9.
A new biflavonol glycoside, quercetin-3-O-β-D-glucopyranoside-(3'→O-3')-quercetin-3-O-β-D-galactopyranoside (9), together with eight known compounds was isolated for the first time from the leaves of Machilus zuihoensis Hayata (Lauraceae). The structure of compound 9 was elucidated by various types of spectroscopic data analysis. Analysis of the biological activity assay found that compound 9 showed significant superoxide anion scavenging activity (IC?? is 30.4 μM) and markedly suppressed LPS-induced high mobility group box 1 (HMGB-1) protein secretion in RAW264.7 cells. In addition, the HMGB-1 protein secretion was also inhibited by quercitrin (3), ethyl caffeate (6), and ethyl 3-O-caffeoylquinate (7) treatment. In the LPS-stimulated inducible nitric oxide synthase (iNOS) activation analysis, two known compounds, quercetin (1) and ethyl caffeate (6), were found to markedly suppress nitric oxide (NO) production (IC?? value, 27.6 and 42.9 μM, respectively) in RAW264.7 cells. Additionally, it was determined that ethyl caffeate (6) down-regulated mRNA expressions of iNOS, IL-1β, and IL-10 in the LPS-treatment of RAW264.7 cells via a suppressed NF-kB pathway. These results suggested for the first time that the new compound 9 and other constituents isolated from M. zuihoensis have potential anti-inflammatory and superoxide anion scavenging effects. These constituents may be useful for treating various inflammatory diseases.  相似文献   

10.
A new xanthone-O-glycoside, the 1,7-dihydroxy-3-methoxyxanthone-8-O-β-D-glucopyranoside ( 7 ), has been isolated from the leaves of Gentiana verna L. by means of column chromatography on polyamid. Six known xanthones: 1-hydroxy-3,7,8-trimethoxyxanthone-1-O-primerveroside ( 2 ); 1,7,8-trihydroxy-3-methoxyxanthone ( 3 ); 7-hydroxy-3,8-dimethoxyxanthone-1-O-primeveroside ( 4 ); 7,8-dihydroxy-3-methoxyxanthone-1-O-primeveroside ( 5 ); mangiferin 6 and the flavone C-glycoside isoorientin 8 have also been isolated and identified.  相似文献   

11.
Microbial metabolism of 7-hydroxyflavanone (1) with fungal culture Cunninghamella blakesleeana (ATCC 8688a), yielded flavanone 7-sulfate (2), 7,4'-dihydroxyflavanone (3), 6,7-dihydroxyflavanone (4), 6-hydroxyflavanone 7-sulfate (5), and 7-hydroxyflavanone 6-sulfate (6). Mortierella zonata (ATCC 13309) also transformed 1 to metabolites 2 and 3 as well as 4'-hydroxyflavanone 7-sulfate (7), flavan-4-cis-ol 7-sulfate (8), 2',4'-dihydroxychalcone (9), 7,8-dihydroxyflavanone (10), 8-hydroxyflavanone 7-sulfate (11), and 8-methoxy-7-hydroxyflavanone (12). Beauveria bassiana (ATCC 7159) metabolized 1 to 2, 3, and 8, flavanone 7-O-β-D-O-4-methoxyglucopyranoside (13), and 8-hydroxyflavanone 7-O-β-D-O-4-methoxyglucopyranoside (14). Chaetomium cochlioides (ATCC 10195) also transformed 1 to 2, 3, 9, together with 7-hydroxy-4-cis-ol (15). Mucor ramannianus (ATCC 9628) metabolized 1 in addition to 7, to also 4,2',4'-trihydroxychalcone (16), 7,3',4'-trihydroxyflavanone (17), 4'-hydroxyflavanone 7-O-α-L-rhamnopyranoside (18), and 7,3',4'-trihydroxy-6-methoxyflavanone (19). The organism Aspergillus alliaceus (ATCC 10060) transformed 1 to metabolites 3, 16, 7,8,4'-trihydroxyflavanone (20), and 7-hydroxyflavanone 4'-sulfate (21). A metabolite of 1, flavanone 7-O-β-D-O-glucopyranoside (22) was produced by Rhizopus oryzae (ATCC 11145). Structures of the metabolic products were elucidated by means of spectroscopic data. None of the metabolites tested showed antibacterial, antifungal and antimalarial activities against selected organisms. Metabolites 4 and 16 showed weak antileishmanial activity.  相似文献   

12.
Three new triterpenoid saponins (1-3) were isolated from the dried aerial parts of Dianthus superbus L. (Caryophyllaceae). Their structures were established as 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-6-O-((3S)-3-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (1), 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-glucopyranosyl(1→3)][β-D-6-O-((3S)-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (2), 3-O-α-L-arabinopyranosyl-3β,16α-dihydroxyolean-12-en-23,28-dioic acid 28-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside (3), on the basis of various spectroscopic analyses and chemical degradations.  相似文献   

13.
There are only three species in the genus Diuranthera (Liliaceae), which is endemic in the southwest of China1. Four steroidal saponins, diuranthosides A-C and chloromalo-side A were isolated from the fresh roots of D. major. This paper deals with the structure elucidation of two new steroidal saponins, diuranthosides D and E, which were isolated from the methanolic extract of whole plant of D. inarticulata Wang et K. Y. Lang.Diuranthoside D (1), [(]-38 (c 0.08, pyridine), afforded galac…  相似文献   

14.
蔡双莲  吴峥  吴进  汪秋安  单杨 《有机化学》2012,32(3):560-566
以橙皮苷为原料,经脱氢、选择性甲基化、糖苷水解、相转移催化下的糖苷化反应、异戊烯基化和法呢烯基化等反应步骤,分别合成了3’-O-甲基香叶木素(1),香叶木素-7-O-β-D-葡萄糖苷(2),香叶木素-7-O-β-D-半乳糖苷(3),3’-O-甲基香叶木素-7-O-β-D-葡萄糖苷(4)4种天然产物及3’-O-甲基香叶木素-7-O-β-D-半乳糖苷(5),香叶木素-7-O-β-D-乙酰葡萄糖苷(6)、香叶木素-7-O-β-D-乙酰半乳糖苷(7),3’-O-甲基香叶木素-7-O-β-D-乙酰葡萄糖苷(8),3’-O-甲基香叶木素-7-O-β-D-乙酰半乳糖苷(9),7-O-异戊基香叶木素(10),7-O-异戊烯基-3’-O-甲基香叶木素(11)和7-O-法呢烯基-3’-O-甲基香叶木素(12)8种新的香叶木素衍生物.所合成化合物的结构已由核磁共振谱、红外光谱和质谱所证实,并用比色法MTT[3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐]蛋白染色法对所合成的目标化合物进行了体外抗肿瘤细胞生物活性测试,发现化合物6,10和11对肝癌细胞(SMMC-7721)、乳腺癌细胞(MCF-7)和结肠癌细胞(SW480)有一定的抑制活性.  相似文献   

15.
Literature information is given on the current state of the study of the chemical transformation of cycloartane triterpenoids. A method has been developed for the transformation of the genin part of glycosides of 20,24-epoxycycloartan-25-ols with retention of the carbohydrate constituents. Three 25-norglycosides have been synthesized from natural cyclosieversigenin glycosides, namely 16β-acetoxy-3β,6α-dihydroxy-20R,25-norcycloartan-20,24-olide 3-O-[O-α-L-arabinopyranosyl-(1→2)-β-D-xylopyranoside] 6-O-β-D-xylopyranoside (VIII), sodium 3β,6α,16β,20-tetrahydroxy-20R,25-norcycloartan-24-oate 6-O-β-D-glucopyranoside 3-O-β-D-xylopyranoside (XII), and 20R,25-norcycloartane-3β,6α,16β,20,24-pentaol 6-O-β-D-glucopyranoside 3-O-β-D-xylopyranoside (XIII).  相似文献   

16.
从石竹科植物九子参(Silene rubicunda)根中得到四个糖链上带乙酰基的新的三萜皂苷-九子参苷A, B, C, D(rubicunosides A~D, 1~4)。前文已详细报道了九子参苷A的结构研究, 本文报道九子参苷B, C, D的结构。通过FAB-MS和NMR,分别确定九子参苷B, C, D为糖链上带单乙酰基的三萜九糖苷、七糖苷和糖链上带双乙酰基的三萜八糖苷, 分别命名为皂树酸-3-O-β-D-吡喃半乳糖-(1→2)-[β-D-吡喃木糖-(1→3)]-β-D-吡喃葡萄糖醛酸-28-O-β-D-吡喃木糖-(1→3)-β-D-吡喃木糖-(1→4)-α-L-吡喃鼠李糖-(1→4)-[β-D-吡喃葡萄糖-(1→4')-β-D-吡喃鸡纳糖-(1→2)]-[3'-O-乙酰基]-β-D-吡喃夫糖苷(九子参苷B, 2), 皂树酸-3-O-β-D-吡喃半乳糖-(1→2)-[β-D-吡喃木糖-(1→3)]-β-D-吡喃萄淘糖醛酸-28-O-β-D-吡喃木糖-(1→4)-α-L-吡喃鼠李糖-(1→4)-[4"-O-乙酰基-β-D-吡喃葡萄糖-(1→2)]-β-D-吡喃夫糖苷(九子参苷C, 3), 皂树酸-3-O-β-D-吡喃半乳糖-(1→2)-[β-D-吡喃半乳糖-(1→2)-[β-D-吡喃木糖-(1→3)]-[6'-O-正丁基]-β-D-吡喃葡萄糖醛酸-28-O-β-D-吡喃木糖-(1→3)-β-D-吡喃木糖-(1→4)-α-L-吡喃鼠李糖-(1→4)-[2"-O-乙酰基-β-D-吡喃鸡纳糖-(3'-O-乙酰基]-β-D-吡喃夫糖苷(九子参苷D, 4)。  相似文献   

17.
豆荚软珊瑚Lobophytum sp. 的次生代谢产物研究   总被引:4,自引:0,他引:4  
从海南岛三亚海域采集的软珊瑚Labophytumsp.中分离得五个甾醇苷(1)~(5)。通过波谱分析,确定它们的化学结构依次为3'-O-乙酰基-4-O-[β-D-吡喃木糖苷]-孕甾-20-烯-3β,4α-二醇(1),4-O-[β-D-吡喃木糖苷]-孕甾-20-烯-3β,4α-二醇(2),4'-O-乙酰基-4-O-[β-D-吡喃木糖苷]-孕甾-20-烯-3β,4α-二醇(3),4'-O-乙酰基-4-O-[β-D-吡喃阿拉伯糖苷]-孕甾-20-烯-3β,4α-二醇(4)和4-O-[β-D-吡喃阿拉伯糖苷]-孕甾-20-烯-3β,4α-二醇(5),其中1为新化合物。体外细胞毒性实验表明:化合物(1),(2)和(5)对SKMG-4,Hep-G2和CNE2三种人体癌细胞具有抑制作用。  相似文献   

18.
A new flavonol glycoside, kaempferol 3-O-α-L-rhamnopyranosyl (1?→?6)-O-[β-D-glucopyranosyl (1?→?2)-O-β-D-galactopyranosyl (1→2)]-O-β-D-glucopyranoside (1), together with a known compound, kaempferol 3-O-β-D-glucopyranosyl (1?→?2)-O-β-D-galactopyranosyl (1?→?2)-O-β-D-glucopyranoside (2) was isolated from the seeds of Nigella glandulifera. Their structures were elucidated on the basis of spectral analysis, including ESI-MS, ESI-MS/MS, HR-ESI-MS, DQF-COSY, TOCSY, HSQC and HMBC techniques.  相似文献   

19.
In addition to the know steroid sapogenin (25S)-ruscogenin (I), three new glycosides have been isolated from the leaves ofNolina microcarpa S. Wats. (family Dracaenacea), and the following structures are suggested for them: (25S)-spirost-5-ene-1β,3β-diol 1-O-β-D-fucopyranoside (nolinospiroside C, II), (25S)-furost-5-ene-1β,3β,22α,26-tetraol 1-O-β-D-fucopyranoside (nolinofuroside A, III), and (25S)-furost-5-ene-1β, 3β, 22α, 26-tetraol 1-O-β-D-fucopyranoside 26-O-β-D-glucopyranoside (nolinofuroside C, V).  相似文献   

20.
《Analytical letters》2012,45(16):2525-2533
Following optimization of extraction, separation, and analytical conditions, a simple, rapid, and sensitive HPLC-UV method was developed for the simultaneous determination of seven major bioactive components in Sambucus chinensis Lindl, including chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, kaempferol-3-O-β-D-galactopyranoside, kaempferol-3-O-β-D-glucopyran-oside, and kaempferol-3-O-(6-actyl)-β-D-galacto-pyranoside. The good chromatographic separation was performed on a Gemini C18 reversed-phase analytical column (250 mm × 4.6 mm, 5 μm) by gradient elution with acetonitrile and formate aqueous buffer (containing 0.8% formic acid, V/V) at a flow rate of 1.0 mL/min. The detection wavelength was set at 326 nm. The intra-day and inter-day precisions were evaluated with the R.S.D. values less than 4.0%. The mean recoveries of the seven compounds were in the range of 92.4%–104.8%. The method was successfully applied to determine the seven bioactive compounds in six different origins of Sambucus chinensis Lindl samples, and there was a significant variation in the contents of the seven compounds among the six samples. Therefore, this method provided a new basis of overall assessment for routine use in the quality control of Sambucus chinensis Lindl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号