首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-infrared to visible upconversion luminescence in Ni2+:CsCdCl3, Ni2+:CsMnCl3, and Ni2+:RbMnCl3 is presented and analyzed. In all three materials upconversion occurs via a sequence of ground-state absorption/excited-state absorption processes, which are both formally spin-forbidden transitions. Consequently, in the diamagnetic Ni2+:CsCdCl3 they are weak, and the efficiency of the upconversion process is relatively low. This is in clear contrast to the isostructural Ni2+:RbMnCl3 where the spin selection rule relaxes because of Ni(2+)-Mn2+ exchange interactions, leading to an intensity enhancement of the spin-flip transitions involved in the Ni2+ upconversion mechanism. This results in an exchange-induced enhancement of the upconversion rate in Ni2+:RbMnCl3 relative to Ni2+:CsCdCl3 by 2 orders of magnitude after two-color excitation into the maxima of the ground-state and excited-state absorption bands. In Ni2+:CsMnCl3 the Ni(2+)-Mn2+ exchange interaction does not play a significant role. This is due to the different Ni(2+)-Cl(-)-Mn2+ bridging geometry relative to Ni2+:RbMnCl3. In contrast to Ni2+:CsCdCl3 and Ni2+:RbMnCl3 where the upconversion luminescence occurs from Ni2+, in Ni2+:CsMnCl3 the upconverted energy is emitted from Mn2+ in the visible spectral region. This leads to an enhanced visible upconversion luminescence in Ni2+:CsMnCl3, relative to the other two samples where Ni2+ near-infrared inter-excited-state emissions compete with the visible upconversion luminescence.  相似文献   

2.
Tm2+ doped in CsCaI3 displays unusual optical properties that are characterized by the existence of two metastable 4f-5d excited states in the near-infrared and visible spectral region, respectively. For the first time, a photon upconversion process based on sequential absorption of light by 4f-5d states is reported. The large absorption cross-section of the involved transitions allows highly efficient pumping in the NIR. An efficiency of 11% for the green upconversion luminescence is reached at 10 K, and the upconversion luminescence remains visible by eye up to room temperature. The energy positions of the relevant 4f-5d states and thus the photophysical and light emission properties can be tuned by chemical variation, such as placing the Tm2+ ion into the isostructural CsCaBr3 and CsCaCl3 lattices.  相似文献   

3.
The crystalline colloidal arrays with controllable photonic bandgaps were prepared by the change of volume fraction of the polystyrene microspheres. Upconversion emission property of fluorescent dye has investigated in crystalline colloidal array, and continuous modification of the upconversion emission of fluorescent dye was observed. A significant suppression of upconversion emission of dye in the range of the photonic bandgap as well as enhancement at the bandgap edge was obtained in the crystalline colloidal arrays. In addition, upconversion emission of dye was also enhanced when the excited light overlapped with the long or short bandgap edge of the crystalline colloidal arrays, which is due to slow photons effect near the edges of a photonic bandgap. The continuous modification and enhancement of upconversion emission may be important for the development of low-threshold upconversion lasers and displays.  相似文献   

4.
上转换纳米发光材料因发光效率普遍较低限制了其在应用领域的进一步发展。利用贵金属的局域表面等离子体共振特性调控发射体的局域场成为提高上转换纳米粒子发光性能的有效途径之一。在这个工作中,我们利用合成工艺简单的贵金属米状结构,通过调控上转换纳米颗粒周围的局域场,实现了上转换发光强度的大幅提高。结合三维有限元方法研究了在实际薄膜中Ag米之间可能出现的不同接触方式对所产生的局域场增强效果的影响,同时证实这种局域等离激元耦合所引起的电磁场增强是提高上转换发光性能的重要因素,并且获得了上转换发光将近百倍的增强效果。最后,通过调控等离子层和发光层的厚度,实现上转换发光性能的进一步优化。  相似文献   

5.
Surface-enhanced resonance Raman scattering (SERRS) spectra of various rhodamine dyes, of pyronine G and thiopyronine adsorbed on isolated silver clusters were recorded at the ensemble level and at the single-molecule level with a high-resolution confocal laser microscope equipped with a spectrograph and a CCD-detector. Comparing single-molecule spectra with ensemble spectra, various inhomogeneous spectral features, such as line splitting, spectral wandering, spectral diffusion and abrupt spectral jumps between different metastable spectral states, are revealed positions and the relative intensities of the vibronic bands. Resonance enhancement is investigated with respect to single-molecule surface-enhanced Raman scattering (SERS) spectroscopy and is found to be responsible for approximately three orders of magnitude in sensitivity. A significant influence of the substituents on the single-molecule SERRS sensitivity is found, showing that various chemical effects are responsible for surface enhancement in addition to the electromagnetic enhancement effect.  相似文献   

6.
《化学:亚洲杂志》2017,12(16):2038-2043
The photonic upconversion in rare earth atoms is widely used to convert “invisible” near infrared photons to “visible” photons with continuous wave light. By using a patterned substrate, upconversion become a route for creating new information‐incorporating security codes. The amount of information in the cipher increases in proportion to the number of emission colors as well as the pattern structure. Subsequently, changing the chemical composition of upconversion phosphors on 2 D substrates is required to manufacture information‐rich upconversion cryptography. In this study, we exploited temperature‐controlled thermal reaction on upconversion films deposited on a quartz substrate to prepare security information codes. Multiple color emission was generated from upconversion films as the result of inserting high‐frequency molecular oscillators into the film structures. Fourier‐transform infrared (FTIR) and time‐resolved study corroborated the mechanism of spectral variation of upconversion films.  相似文献   

7.
Efficient upconversion luminescence has been observed from CdSe nanoparticles ranging in size from 2.5 to 6 nm. The upconversion luminescence exhibits a near-quadratic laser power dependence. Emissions from both excitons and trap states are observed in the upconversion and photoluminescence spectra, and in the upconversion luminescence the emission from the trap states is enhanced relative to the trap-state emission in the photoluminescence. The upconversion decay lifetimes are slightly longer than the photoluminescence decay lifetimes. Time-resolved spectral measurements indicate that this is due to the involvement of long decay components from surface or trap states. Both the photoluminescence and upconversion luminescence decrease in intensity with increasing temperature due mainly to thermal quenching. All the observations indicate that trap states work as emitters rather than as intermediate states for upconversion luminescence and that two-photon absorption is the likely excitation mechanism.  相似文献   

8.
Thermal quenching of photoluminescence represents a significant obstacle to practical applications such as lighting, display, and photovoltaics. Herein, a novel strategy is established to enhance upconversion luminescence at elevated temperatures based on the use of negative thermal expansion host materials. Lanthanide‐doped orthorhombic Yb2W3O12 crystals are synthesized and characterized by in situ X‐ray diffraction and photoluminescence spectroscopy. The thermally induced contraction and distortion of the host lattice is demonstrated to enhance the collection of excitation energy by activator ions. When the temperature is increased from 303 to 573 K, a 29‐fold enhancement of green upconversion luminescence in Er3+ activators is achieved. Moreover, the temperature dependence of the upconversion luminescence is reversible. The thermally enhanced upconversion is developed as a sensitive ratiometric thermometer by referring to a thermally quenched upconversion.  相似文献   

9.
Near-infrared to visible upconversion luminescence in CsCaCl3:Tm2+, CsCaBr3:Tm2+ and CsCaI3:Tm2+ is presented and analysed. The upconversion process involves exclusively the 4f-5d excited states of Tm2+, which is a novelty among upconversion materials. The presence of more than one long-lived 4f-5d excited state is the prerequisite for this. Multiple emissions from Tm2+ are observed in the title compounds. This is made possible by the favourable energy structure within the 4f-5d states and the low phonon energies of the materials. The energy positions of the relevant 4f-5d states, and thus the photophysical and light emission properties, are affected by the chemical variation along the series. The upconversion efficiency increases from chloride to iodide and the mechanism is found to be a combination of absorption and energy-transfer steps.  相似文献   

10.
The absorption spectra and upconversion fluorescence spectra of Er3+/Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm-1. The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices.  相似文献   

11.
Vanadium(IV) dioxide has emerged as a promising thermochromic material for smart window application through metal–insulator transition, which simultaneously involves an abrupt change in optical, electrical, and magnetic properties. Here, Er3+ or Yb3+-codoped vanadium(IV) dioxide has been prepared by a hydrothermal and annealing process. The structure, metal–insulator transition, and upconversion luminescence characterizations have been evaluated using X-ray diffraction, differential thermal analysis, and fluorescence spectral analysis. The samples exhibit unique properties, including enhancing the intensity of upconversion emission, decreasing the metal–insulator transition temperature to 41.4°C, and emitting bright green upconversion emission along with extremely weak emission in the red region under 980?nm excitation. Moreover, green upconversion luminescence intensity increased by an order of magnitude from the low-temperature monoclinic structure of vanadium(IV) dioxide to the high-temperature rutile structure of vanadium(IV) dioxide for the first time, which will pave a new pathway for researching the application of photoluminescence in smart materials.  相似文献   

12.
Photocatalysts capable of harvesting a broad range of the solar spectrum are essential for sustainable chemical transformations and environmental remediation. Herein, we have integrated NIR-absorbing upconversion nanoparticles (UCNP) with UV-Vis absorbing conjugated porous organic polymer (POP) through the in situ multicomponent C−C coupling to fabricate a UC−POP nanocomposite. The light-harvesting ability of UC−POP is further augmented by loading plasmonic gold nanoparticles (AuNP) into UC−POP. A three-times enhancement in the upconversion luminescence is observed upon the incorporation of AuNP in UC−POP, subsequently boosting the photocatalytic activity of UC−POP−Au. The spectroscopic and photoelectrochemical investigations infer the enhanced photocatalytic oxidation of thioethers, including mustard gas simulant by UC−POP−Au compared to POP and UC−POP due to the facile electron-hole pair generation, suppressed exciton recombination, and efficient charge carrier migration. Thus, the unique design strategy of combining plasmonic and upconversion nanoparticles with a conjugated porous organic polymer opens up new vistas towards artificial light harvesting.  相似文献   

13.
In this work, investigation have been done on polycrystalline yttrium calcium oxyborate (YCa4O(BO3)3) for the realization of existence of second harmonic generation and other photon upconversion processes as concurrent effect with the aid of Er, Yb, Nd trivalent lanthanide ions. Pure, Er:Yb co-doped and Er:Yb:Nd triply-doped YCa4O(BO3)3 samples were prepared through solid state reaction and the phase identification has been done using powder X-ray diffraction spectral analysis. FTIR spectra show that the dopants increases the absorption of functional groups and modifies the lattice vibrational modes of YCa4O(BO3)3. The spectral overlap of optical absorption bands of Er3+, Yb3+, Nd3+ ions in 840 nm–1070 nm region indicates the prospect of energy transfer between these ions. The photoluminescence spectrum of Er:Yb:Nd triply doped sample show good enhancement compared to pure and Er:Yb co-doped YCa4O(BO3)3 samples. In the photon upconversion test carried out using 1064 nm Nd:YAG laser YCa4O(BO3)3:Er:Yb:Nd sample produced green light with efficiency higher than the other two samples. Surface morphology of the samples was recorded using field emission scanning electron microscope and analysed. The elemental composition of the samples has been confirmed by energy dispersive X-ray spectral analysis.  相似文献   

14.
徐榕  冯爱玲  王彦妮  夏侯平 《化学通报》2018,81(12):1059-1071
稀土上转换纳米材料(Upconversion Nanoparticles,UCNPs)可将近红外光转换为可见光,其发光性能优异、化学性质稳定、激发光能有效避免自荧光,因此在生物医学领域应用广泛。但UCNPs的低发光效率限制了其进一步发展。本文综述了近年来研究较多的几种优化稀土上转换纳米材料发光的方法,主要包括调整基质材料和掺杂离子、过渡金属离子与镧系离子共掺杂、引入协同敏化剂减少热效应、有机染料与UCNPs协同作用以及金属表面等离子体共振增强法等。文中分别论述了上述方法的最新研究进展,并总结了这些方法目前存在的问题,指出上转换发光领域的研发重点:一是着重分析各种优化发光方法的作用机理,提出更加完备清晰的理论体系;二是探索更容易被生物体降解的UCNPs,使其副作用降到最低。  相似文献   

15.
A new class of lanthanide‐doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium‐enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+‐Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700‐fold enhancement) and near‐infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red‐emitting upconversion nanoprobes for biological applications.  相似文献   

16.
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+-Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.  相似文献   

17.
Unselectively enhanced multicolour upconversion (UC) emissions and low pumping threshold were achieved in Au@β-NaYF(4):Yb,Tm hybrid nanostructures. This demonstrates that the plasmon field enhancement effect is the main reason for the improved UC emission efficiency.  相似文献   

18.
Energy transfer excited upconversion emission in Nd3+/Pr3+-codped tellurite glass have been studied on pumping with 800 nm wavelength. The upconversion emission bands from Pr3+ ion are observed at the 488, 524, 546, 612, 647, 672, 708 and 723 nm due to the (3P0 + 3P1)-->3H4, 3P1-->3H5, 3P0-->3H5, 3P0-->3H6, 3P0-->3F2, 3P1-->3F3, 3P0-->3F3 and 3P0-->3F4 transitions, respectively. The addition of ytterbium ions (Yb3+) on the upconversion emission intensity is also studied and result shows an eight times enhancement in the upconversion intensity at 488 nm from Pr3+ ions. The pump power and concentration dependence studies are also made. It is found that Yb3+ ions transfer its excitation energy to Nd3+ from which it goes to Pr3+. No direct transfer to Pr3+ is seen. This is verified by codoping Nd3+ and Pr3+ into the host.  相似文献   

19.
Surface enhanced infrared absorption spectroscopic studies (SEIRAS) as a technique to study biological molecules in extremely low concentrations is greatly evolving. In order to use the technique for identification of the structure and interactions of such biological molecules, it is necessary to identify the effects of the plasmonic electric-field enhancement on the spectral signature. In this study the spectral properties of 1,2-Dipalmitoyl-sn-glycero-3 phosphothioethanol (DPPTE) phospholipid immobilized on gold nanoantennas, specifically designed to enhance the vibrational fingerprints of lipid molecules were studied. An AFM study demonstrates an organization of the DPPTE phospholipid in bilayers on the nanoantenna structure. The spectral data were compared to SEIRAS active gold surfaces based on nanoparticles, plain gold and plain substrate (Si) for different temperatures. The shape of the infrared signals, the peak positions and their relative intensities were found to be sensitive to the type of surface and the presence of an enhancement. The strongest shifts in position and intensity were seen for the nanoantennas, and a smaller effect was seen for the DPPTE immobilized on gold nanoparticles. This information is crucial for interpretation of data obtained for biological molecules measured on such structures, for future application in nanodevices for biologically or medically relevant samples.  相似文献   

20.
Conventional luminescent color coding is limited by spectral overlap and the interference of background fluorescence, thus restricting the number of distinguishable identities that can be used in practice. Here, we demonstrate the possibility of generating diverse time‐domain codes, specially designed for a single emission band, using lanthanide‐doped upconversion nanocrystals. Based on the knowledge of concentration quenching, the upconversion luminescence kinetics of KYb2F7: Ho3+ nanocrystals can be precisely controlled by modifying the dopant concentration of Ho3+ ions, resulting in a tunable emission lifetime from 75.8 to 1944.5 μs, which suggests the practicality of these time‐domain codes for optical multiplexing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号