首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the electron beam evaporation method is used to generate an indium tin oxide (ITO) thin film on a glass substrate at room temperature. The surface characteristics of this ITO thin film are then investigated by means of an AFM (atomic force microscopy) method. The influence of postgrowth thermal annealing on the microstructure and surface morphology of ITO thin films are also examined. The results demonstrate that the film annealed at higher annealing temperature (300 °C) has higher surface roughness, which is due to the aggregation of the native grains into larger clusters upon annealing. The fractal analysis reveals that the value of fractal dimension Df falls within the range 2.16-2.20 depending upon the annealing temperatures and is calculated by the height-height correlation function.  相似文献   

2.
Undoped ZnO thin films have been deposited onto glass substrates by spray pyrolysis. The structural, electrical and optical properties were studied on thin films, prepared from precursor solutions with varying the ethanol concentrations. X-ray diffraction studies have shown polycrystalline nature of the films with a hexagonal wurtzite-type structure. The preferential orientation plane (1 0 0) of the ZnO thin film is found to be sensitive to ethanol concentration. The texture coefficient (TC) and grain size value have been calculated. Also ethanol concentration was found to have significant effect on sheet resistivity of the films.  相似文献   

3.
Y2O3 thin films were grown on silicon (1 0 0) substrates by pulsed-laser deposition at different substrate temperatures and O2 pressures. The structure and composition of films are studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Y2O3 thin films deposited in vacuum strongly oriented their [1 1 1] axis of the cubic structure and the film quality depended on the substrate temperature. The magnitude of O2 pressure obviously influences the film structure and quality. Due to the silicon diffusion and interface reaction during the deposition, yttrium silicate and SiO2 were formed. The strong relationship between composition and growth condition was discussed.  相似文献   

4.
Poly(zinc 1,6-hexanedithiolate) thin film, a precursor to prepare ZnS thin film, was self-assembled on a quartz substrate. The UV-vis spectra monitored the annealing process of the poly(zinc 1,6-hexanedithiolate) film, which revealed that the ZnS thin film began to form at approximately 515 K. The result of XRD confirmed the crystallinity of ZnS. With increase of annealing temperature, a red shift of the emission spectra was observed.  相似文献   

5.
Pentacene thin films with thicknesses ranging from 10 nm to 180 nm are investigated by specular X-ray diffraction in the reflectivity regime and in the wide angular regime. The results of the reflectivity measurements show a clear shift of the 001 reflection of the thin film phase depending on the layer thickness. It is shown that this shift can be explained by the dynamical scattering theory. The wide angular regime measurements show the 00L of the thin film phase. Williams-Hall plots are used to extract information on the crystallite size and mean micro strain of the thin film phase. The crystallite size is in good agreement with the results obtained by the reflectivity measurements. From this it can be concluded that the thin film phase crystallites are extended over the entire film thickness down to the substrate. Additionally an increase of the micro strain with increasing film thickness is observed.  相似文献   

6.
Self-organization of chromium on glass was observed during laser ablation of the metal film with partially overlapping laser pulses. The beam of a nanosecond pulse laser tightly focused to a line was applied to the back-side ablation of the chromium thin film on a glass substrate. While the line ablated with a single laser pulse had sharp edges on both sides with ridges of the melted metal, the use of partially overlapping pulses formed a complicated structure made of the metal remaining from the ridges. Regular structures of ripples were developed in a certain range of laser fluence and pulse overlap. The ripple period could be controlled from 2.5 to 4 μm by variation of the processing parameters. Various experimental techniques were applied to test the structures, and different models of the ripple formation in the thin metal film were considered. The initial quasi-periodical formation started because of dewetting of thin liquid metal films on the glass substrate after its melting. Similar to the evaporation of liquid films, the small perturbation in the ridge thickness was able to induce instability in evaporation of the thin melted metal film. Freezing of the nonequilibrium state between laser pulses was one of the stabilizing factors in self-organization of the metal.  相似文献   

7.
The preparation in thin film form of the known icosahedral phase in Ti-Ni-Zr bulk alloys has been investigated as a function of substrate temperature. Films were deposited by pulsed laser deposition on sapphire substrates at temperatures ranging from room temperature to 350 °C. Morphological and structural modifications have been followed by grazing-incidence and θ–2θ X-ray diffraction, transmission electron diffraction and imaging. Chemical composition has been analyzed by electron probe microanalysis. The in-depth variation of composition has been studied by secondary neutral mass spectroscopy. We show that pulsed laser deposition at 275 °C makes the formation of a 1-μm-thick film of Ti-Ni-Zr quasicrystalline textured nanocrystallites possible. Received: 7 June 2001 / Accepted: 18 February 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +33-3/8357-6300, E-mail: brien@mines.u-nancy.fr  相似文献   

8.
Negative ion element impurities breakdown model in HfO2 thin film was reported in this paper. The content of negative ion elements were detected by glow discharge mass spectrum analysis (GDMS); HfO2 thin films were deposited by the electron-beam evaporation method. The weak absorption and laser induced damage threshold (LIDT) of HfO2 thin films were measured to testify the negative ion element impurity breakdown model. It was found that the LIDT would decrease and the absorption would increase with increasing the content of negative ion element. These results indicated that negative ion elements were harmful impurities and would speed up the damage of thin film.  相似文献   

9.
A general theoretical analysis of the effect of film thickness on equilibrium and kinetic surface segregation in binary alloy thin films is presented. In this analysis, a constrained condition that represents the finite size of thin film system has been introduced to the modified Darken model, which has been used to describe both equilibrium and kinetic surface segregation in bulk materials. Simulation of surface segregation for alloy thin films can be carried out for all composition ranges and all film thicknesses if only knowing the surface segregation parameters for bulk materials. Simulations of equilibrium and kinetic surface segregation in Cu(1 1 1)Ag binary alloy thin film are presented.  相似文献   

10.
Drift mobility of charge carriers in p-terphenyl, p-quaterphenyl and tetracene polycrystalline thin films was measured using the classical time-of-flight method. The measurements were carried out both in the atmosphere and in vacuum of the order of 10 - 3 Torr. The mobility measured in the atmosphere is of the order of 10 -4cm2V-1s-1 and turns out to be about 1 order of magnitude higher than that measured in vacuum. It is suggested that the hopping transport of charge dominates in the structures investigated. The increase in the mobility for the measurements in the atmosphere probably results from the additional localized states due to water and other atmosphere molecules.  相似文献   

11.
The availability of easy and reproducible methods for formation of periodically nanostructured surfaces allows one to study the quasi-epitaxial growth of nanowires on such artificially modified substrates. Here, we demonstrate that crystalline nanofibers of para-hexaphenyl can grow on porous alumina templates with high pore regularity once the templates have been coated by a thin Au film. Nanofibers of that kind represent a model system for the general class of organic nanowires which have chemically changeable optoelectronic properties and hence are of interest for integration into future optoelectronic devices.  相似文献   

12.
Spectroscopic ellipsometry and photoluminescence (PL) measurements on SnO2 nanocrystalline textured films grown on p-InSb (111) substrates by using radio-frequency magnetron sputtering at low temperature were carried out to investigate the dependence of the optical parameters on the SnO2 thin film thickness. As the SnO2 film thickness increases, while the energy gap of the SnO2 film decreases, its refractive index increases. The PL spectra show that the broad peaks corresponding to the donor-acceptor pair transitions are dominant and that the peak positions change with the SnO2 film thickness. These results can help improve understanding for the application of SnO2 nanocrystalline thin films grown on p-InSb (111) substrates in potential optoelectronic devices based on InSb substrates.  相似文献   

13.
Tin dioxide (SnO2) thin films were deposited by plasma enhanced-atomic layer deposition (PE-ALD) on Si(1 0 0) substrate using dibutyl tin diacetate (DBTA) ((CH3CO2)2Sn[(CH2)3-CH3]2) as precursor. The process parameters were optimized as a function of substrate temperature, source temperature and purging time. It is observed that the surface phenomenon of the thin films was changed with film thickness. Atomic force microscopy (AFM) images and X-ray diffraction (XRD) pattern were used to observe the texture and crystallanity of the films. The films deposited for 100, 200 and 400 cycles were characterized by XPS to determine the chemical bonding properties. XPS results reveal that the surface dominant oxygen species for 100, 200 and 400 cycles deposited films are O2, O and O2−, respectively. The 200 cycles film has exhibited highest concentration of oxygen (O) species before and after annealing. Conductivity studies revel that this film has best adsorption strength to the oxygen ions forming on the surface. The sensor with 200 cycles SnO2 thin film has shown highest sensitivity to CO gas than other films. A correlation between the characteristics of Sn3d5/2 and O1s XPS spectra before and after annealing and the electrical behavior of the SnO2 thin films is established.  相似文献   

14.
The deposition of decomposed ethylene on silicon wafer at lower temperature using hot filament chemical vapor deposition (HFCVD) method was applied to compose thin film of carbon and its compounds with silicon and hydrocarbon structures. The films were analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy with elemental microanalysis by energy dispersive X-ray spectrometer. The structure and morphology of the early stage of the film deposition was analyzed. The obtaining of SiC as well as diamond-like structure with this method and catalytic influence of chemical admixtures on the film structure and properties are discussed.  相似文献   

15.
The beam of a nanosecond pulse laser tightly focused to a line was applied for the back-side ablation of the chromium thin film on a glass substrate. The stripe ablated with a single laser pulse had sharp edges on both sides and ridges of the melted metal around it. The partially overlapping pulses formed a wide cleaned area with a complicated structure made of the metal remaining from the ridges. Regular structures, ripples, were developed when laser fluence was slightly above the single-pulse removal threshold and the shift between pulses was less than half width of the line ablated with a single laser pulse. The ripples were located periodically (∼4 μm) and were orientated perpendicularly to the long axis of the beam spot. Their orientation did not depend on the laser beam polarization. Different models of the ripple formation in the thin metal film were considered, and instability of the moving vapor-liquid-solid contact line during evaporation of thin liquid films appears to be the most probable process responsible for the observed phenomena. Formation of regular gratings with the unlimited line length was experimentally implemented by using the above-mentioned technique.  相似文献   

16.
This paper reports the first results obtained on monobarium gallate thin films grown on silicon and platinum coated substrates by pulsed laser deposition. The influence of oxygen background pressure and substrate (or post-annealing) temperature on the film properties was studied. The films were characterized by XRD, RHEED, AFM, photoelectron and electrical impedance spectroscopy. The structure analysis showed that the films crystallized into a hexagonal phase, most probably into (metastable) α-BaGa2O4. Depending on deposition conditions, films with different (from nearly epitaxial to polycrystalline) textures were obtained.  相似文献   

17.
A simple procedure to minimize the number of trial-and-error high-vacuum depositions required to manufacture a thin film filter prototype is presented. For optical coatings obtained by thermal evaporation, the main difficulty is the accurate characterization (refractive index and thickness) of the layers under the actual deposition conditions. The proposed method is able to describe dispersion as well as inhomogeneity in the refractive index of the component layers. It requires only a suitable substrate holder attachment and standard thin film measurement equipment: a spectrophotometer and a three wavelength ellipsometer. The technique is illustrated with the development of an anti-reflection (AR) coating for glass which also includes an inhomogeneous layer.  相似文献   

18.
We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y2O3-doped ZrO2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.  相似文献   

19.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.  相似文献   

20.
We study large scale surface deformations of a liquid film unstable due to the Marangoni effect caused by external heating on a smooth and solid substrate. The work is based on the thin film equation which can be derived from the basic hydrodynamic equations. To prevent rupture, a repelling disjoining pressure is included which accounts for the stabilization of a thin precursor film and so prevents the occurrence of completely dry regions. Linear stability analysis, nonlinear stationary solutions, as well as three-dimensional time dependent numerical solutions for horizontal and inclined substrates reveal a rich scenario of possible structures for several realistic fluid parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号