首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Psoriasis is one of the most common immune-mediated chronic inflammatory skin diseases. However, little is known about the molecular mechanism underlying the immunological circuits that maintain innate and adaptive immune responses in established psoriasis. In this study, we found that the Pellino1 (Peli1) ubiquitin E3 ligase is activated by innate pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), and is highly upregulated in human psoriatic skin lesions and murine psoriasis-like models. Increased Peli1 expression is strongly correlated with the immunopathogenesis of psoriasis by activating hyperproliferation of keratinocytes in the S and G2/M phases of the cell cycle and promoting chronic skin inflammation. Furthermore, Peli1-induced psoriasis-like lesions showed significant changes in the expression levels of several T helper 17 (Th17)-related cytokines, such as IL-17a, IL-21, IL-22, IL-23, and IL-24, indicating that overexpression of Peli1 resulted in the sequential engagement of the Th17 cell response. However, the overexpression of Peli1 in T cells was insufficient to trigger psoriasis, while T cells were indispensable for disease manifestation. In summary, our findings demonstrate that Peli1 is a critical cell cycle activator of innate immunity, which subsequently links Th17 cell immune responses to the psoriatic microenvironment.Subject terms: Chronic inflammation, Immunoproliferative disorders  相似文献   

3.
The aberrant hedgehog (Hh)/GLI signaling pathway causes the formation and progression of a variety of tumors. We recently constructed a cell-based screening system to search for Hh/GLI signaling inhibitors from natural resources. Using our screening system, Adenium obesum was found to include Hh/GLI signaling inhibitors from our tropical plant extract libraries. Bioassay-guided fractionation of this plant extract led to the isolation of 17 cardiac glycosides (1-17), including 3 new compounds (4, 9, 16). These compounds showed strong inhibitory activities, especially the IC(50) of 17 is 0.11 μM. The inhibition of GLI-related protein expression with 3, 9, 11, 15 and 17 was observed in human pancreatic cancer cells (PANC1), which express Hh/GLI components aberrantly. The expressions of GLI-related proteins PTCH and BCL2 were clearly inhibited. These compounds also showed selective cytotoxicity against two cancer cell lines, with less effect against normal cells (C3H10T1/2). RT-PCT examinations showed that Ptch mRNA expression by 3, 11, 15 and 17 was inhibited.  相似文献   

4.
Neonatal pig testicular 20 beta-hydroxysteroid dehydrogenase (20 beta-HSD) catalyzed the oxidation of 20 beta-hydroxysteroids, 17 alpha,20 beta-dihydroxypregn-4-en-3-one and 20 beta-hydroxypregn-4-en-3-one in the presence of beta-nicotinamide adenine dinucleotide phosphate (beta-NADP+). The behavior of 20 beta-HSD activity toward the substrate of 17 alpha,20 beta-dihydroxypregn-4-en-3-one differed from the catalytic reaction for 20 beta-hydroxypregn-4-en-3-one. The enzyme could catalyze not only 20 beta-hydroxysteroids but also 20 alpha-hydroxy-5-ene steroids, 20 alpha-hydroxypregn-5-en-3 beta-ol and 17 alpha,20 alpha-hydroxypregn-5-en-3 beta-ol with 22.1 and 8.7% of activity relative to 20 beta-hydroxypregn-4-en-3-one, respectively. The enzyme preferentially required beta-NADP+, and also utilized beta-nicotinamide adenine dinucleotide beta-NAD+ and beta-nicotinamide adenine dinucleotide 3'-phosphate (beta-3'-NADP+) nonspecifically as the cofactor. The optimum pH was observed at pH 7.5 with the substrate of 20 beta-hydroxypregn-4-en-3-one. The activation energies obtained from oxidation-reduction reactions of 20 beta-HSD for the substrate of 20 beta-hydroxypregn-4-en-3-one, progesterone and 17 alpha-hydroxyprogesterone were estimated at 13.8, 27.0 and 20.0 kcal/mol, respectively.  相似文献   

5.
Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane)   总被引:1,自引:0,他引:1  
This paper describes the influence of the composition of poly(dimethylsiloxane) (PDMS) on the attachment and growth of several different types of mammalian cells: primary human umbilical artery endothelial cells (HUAECs), transformed 3T3 fibroblasts (3T3s), transformed osteoblast-like MC3T3-E1 cells, and HeLa (transformed epithelial) cells. Cells grew on PDMS having different ratios of base to curing agent: 10:1 (normal PDMS, PDMSN), 10:3 (PDMSCA), and 10:0.5 (PDMSB). They were also grown on "extracted PDMS" (normal PDMS that has reduced quantities of low molecular-weight oligomers, PDMSN,EX) and normal PDMS that had been extracted and then oxidized (PDMSN,EX,OX); all surfaces were exposed to a solution of fibronectin prior to cell attachment. Generally, fibronectin-coated PDMS is a suitable substrate for culturing mammalian cells. Compatibility of cells on some surfaces, however, was dependent on the cell type: PDMSN,EX,OX caused cell detachment of 3T3 fibroblasts and MC3T3-E1 cells, and PDMSCA caused detachment of HUAECs and HeLa cells. Growth of cells on PDMSN, PDMSN,EX, and PDMSB was comparable to growth on tissue culture-treated polystyrene for most of the cell types. All cells grew at similar rates on PDMS substrates regardless of the stiffness of the substrate, for substrates having Young's moduli ranging from E=0.60 +/- 0.04 to 2.6 +/- 0.2 MPa (for PDMSB and PDMSN,EX, respectively).  相似文献   

6.
To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor.  相似文献   

7.
A new fluorogenic substrate was developed for 3alpha-hydroxysteroid dehydrogenases (3alpha-HSD), including the human enzymes implicated in important physiological functions (androgen deactivation, neurosteroid activation). While ketone 5 is nonfluorescent, the corresponding alcohol exhibits high fluorescence with emission maximum at 510 nm, thus constituting a redox optical switch. This study began with a chemical concept of a ketone-alcohol optical switch which guided the synthesis of a focused array of compounds. Subsequently, seven compounds were selected (1-7) on the basis of their optical and chemical (stability) properties and were submitted to a screen against a panel of dehydrogenase enzymes. Probe 5 was found to be highly selective for bacterial, rat, and human 3alpha-HSD enzymes. The kinetic parameters were obtained for human 3alpha-HSD enzyme (type 2 isozyme, AKR 1C3; Km = 2.5 muM, kcat = 8.2 min-1). Remarkably, comparison to 5alpha-dihydrotestosterone (5alpha-DHT, Km = 26 muM, kcat = 0.25 min-1, Figure 4), a likely physiological substrate in prostate, revealed that synthetic probe 5 is in fact a far better substrate for this enzyme. Structure 5 represents an exciting lead for the development of a redox imaging probe.  相似文献   

8.
We have previously described an in vitro model for studying human immunodeficiency virus, type 1 (HIV-1) infection in CD4+ T cells [1]. This model employs the WE17/10 cell line, which loses expression of its T cell receptor/CD3 (TCR/CD3) after several months of productive infection. We have used this model to analyze the synthesis and posttranslational modification of viral and cellular proteins after HIV-1 infection and to determine the relationship of these changes to TCR/CD3 expression. Mainly we observe positive changes in protein expression after infection. A phosphoprotein, referred to as WH:1, appears in infected cells that still express their TCR/CD3 complex, and its persistence is linked to the presence of the complex. We examined whether loss of the TCR/CD3 complex could be associated with alterations in the T cell activation pathway as a result of infection. We used T cell activators and inhibitors to determine whether there were common elements between the two events. Quantitative enhancement in one spot, Cs:1, occurred after both Cyclosporin A treatment of uninfected cells and HIV-1 infection of untreated cells. Taken altogether, these data suggest that a correlation exists between negative regulation of late events in the T cell activation pathway and down regulation of the TCR/CD3 complex after HIV-1 infection.  相似文献   

9.
BackgroundMitochondrial plays a vital role in regulating obesity and related comorbidity. Targeting mitochondrial function could be a potent therapeutic approach to inhibit metabolic-related diseases like obesity, liver disease. Prolonged use of existing drug moieties demonstrated severe adverse effects.MethodsWe apply Ucp1-A-GFP immortalized reporter cell lines and HEK293T cell lines to evaluate cell viability, mitochondrial ATP production, and the in-silico model.ResultsWe found Glycyrrhizin, an HMGB1 (high mobility group box 1) inhibitor, plays a significant role in modulating mitochondrial function against obesity. At the cellular level, the adipocytes treated with Glycyrrhizin have increased mitochondrial function. Further analysis shows that compared with the control group, the cells in the treatment group contain more mitochondria. Glycyrrhizin demonstrated a nontoxic effect on the HEK293T cell line, upregulating mitochondrial DNA and reducing mitochondrial ATP production levels. In-silico study exhibited drug-protein interaction and binding side with UCP1.ConclusionGlycyrrhizin improves mitochondrial function that would be an effective drug candidate to treat metabolic diseases and obesity-related diseases. Further investigation will require both the human and animal models to reveal new insight into the mechanism against obesity, metabolic diseases or mitochondrial dysfunction-related diseases.  相似文献   

10.
The enzyme complex 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4-isomerase (3beta-HSD) is involved in the biosynthesis of all classes of active steroids. The expression of 3b-HSD in human uterine endometrium during the menstrual cycle and decidua was examined in an effort to understand its role during ova implantation. 3beta-HSD was weakly expressed in the glandular epithelium of the proliferative phase and moderately expressed in the glandular epithelium of secretory phase of the endometrium. In the decidua of the ectopic pregnancy, 3beta-HSD was strongly expressed. The human uterine endometrial 3beta-HSD was identified as being the same type as the placental 3beta-HSD by RT-PCR and sequence analysis. In addition to the expression of 3beta-HSD, P450scc was expressed in the decidua of the ectopic pregnancy. These results suggest that pregnenolone might be synthesized from cholesterol by P450scc de novo and then, it is converted to progesterone by 3beta-HSD in the uterine endometrium. The data implies that the endometrial 3beta-HSD can use not only the out-coming pregnenolone from the adrenal gland but also the self- made pregnenolone to produce progesterone. The de novo synthesis of progesterone in the endometrium might be a crucial factor for implantation and maintenance of pregnancy.  相似文献   

11.
12.
Cytochrome P450 (CYP) 7B1 is a steroid cytochrome P450 7α‐hydroxylase that has been linked directly with bile salt synthesis and hereditary spastic paraplegia type 5 (SPG5). The enzyme provides the primary metabolic route for neurosteroids dehydroepiandrosterone (DHEA), cholesterol derivatives 25‐hydroxycholesterol (25‐HOChol), and other steroids such as 5α‐androstane‐3β,17β‐diol (anediol), and 5α‐androstene‐3β,17β‐diol (enediol). A series of investigations including homology modeling, molecular dynamics (MD), and automatic docking, combined with the results of previous experimental site‐directed mutagenesis studies and access channels analysis, have identified the structural features relevant to the substrate selectivity of CYP7B1. The results clearly identify the dominant access channels and critical residues responsible for ligand binding. Both binding free energy analysis and total interaction energy analysis are consistent with the experimental conclusion that 25‐HOChol is the best substrate. According to 20 ns MD simulations, the Phe cluster residues that lie above the active site, particularly Phe489, are proposed to merge the active site with the adjacent channel to the surface and accommodate substrate binding in a reasonable orientation. The investigation of CYP7B1–substrate binding modes provides detailed insights into the poorly understood structural features of human CYP7B1 at the atomic level, and will be valuable information for drug development and protein engineering.  相似文献   

13.
An application of gas sensors for rapid bioanalysis is presented. An array of temperature-modulated semiconductor sensors was used to characterize the headspace above a cell culture. Recombinant Saccharomyces cerevisiae yeast cells, able to respond to 17-estradiol by producing a reporter protein, were used as a model system. Yeast cells had the DNA sequence of the human estrogen receptor stably integrated into the genome, and contained expression plasmids carrying estrogen-responsive sequences and the reporter gene lac-Z, encoding the enzyme -galactosidase. The sensor-response profiles showed small but noticeable discrimination between cell samples induced with 17-estradiol and non-induced cell samples. The sensor array was capable of detecting changes in the volatile organic compound composition of the headspace above the cultured cells, which can be associated with metabolic changes induced by a chemical compound. This finding suggests the possibility of using cross-selective gas-sensor arrays for analysis of drugs or bioactive molecules through their interaction with cell systems, with the advantage of providing information on their bioavailability.  相似文献   

14.
Allergic rhinitis (AR) is a highly prevalent allergic disease induced by immunoglobulin (Ig) E-mediated hypersensitivity reaction at the nasal epithelium against inhaled allergens. Previous studies have demonstrated that Pentaherbs formula (PHF), a modified herbal formula comprising five herbal medicines (Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis), could suppress various immune effector cells to exert anti-inflammatory and anti-allergic effects in allergic asthma and atopic dermatitis. The present study aimed to further determine the anti-inflammatory activities of PHF in an ovalbumin (OVA)-induced AR BALB/c mouse model. Nasal symptoms such as sneezing and nose rubbing were recorded and the serum total IgE and OVA-specific IgG1, as well as interleukin (IL)-4, IL-5, IL-10, IL-13, chemokines CXCL9 CXCL10, and tumor necrosis factor (TNF)-α concentrations in nasal lavage fluid (NALF) were measured during different treatments. Effects of PHF on the expression of inflammatory mediators in the sinonasal mucosa were quantified using real-time QPCR. PHF was found to suppress allergic symptoms, infiltration of inflammatory cells, and hyperplasia of goblet cells in the nasal epithelium of the OVA-induced AR mice. PHF could reduce OVA-specific IgG1 level in serum, and TNF-α and IL-10 in nasal lavage fluid (NALF), significantly up-regulate the splenic regulatory T (Treg) cell level, increase the Type 1 helper T cell (Th1)/Type 2 helper T cell (Th2) ratio, and reduce the Th17 cells (all p < 0.05). PHF could also alleviate in situ inflammation in sinonasal mucosa of OVA-induced AR mice. In conclusion, oral treatment of PHF showed immuno-modulatory activities in the OVA-induced AR mice by regulating the splenic T cell population to suppress the nasal allergy symptoms and modulating inflammatory mediators, implicating that PHF could be a therapeutic strategy for allergic rhinitis.  相似文献   

15.
The most challenging task of creating a bioengineered ovary to restore fertility in cancer patients is choosing an appropriate biomaterial to encapsulate isolated preantral follicles and ovarian cells. In this study, as a biocompatible and biodegradable biomaterial containing fibrin-like bioactivity and manageable physical properties, PEGylated fibrin aims to encapsulate isolated ovarian stromal cells as a first step of creating an engineered ovarian tissue. For this purpose, human ovarian stromal cells were isolated from frozen-thawed ovarian tissue and cultured in the PEGylated fibrin hydrogels (PEG:Fib), which were fabricated by combining two different molar ratios of PEG:Fib (10:1 and 5:1) and two thrombin concentrations. The samples were analyzed at days 0 and 5 of in vitro for cell density, proliferation (Ki67), and apoptosis (caspase-3). Moreover, LIVE/DEAD and PrestoBlue assays assessed cell viability and proliferation on days 1, 3, and 5. The effect of PEGylation on the biodegradation behavior of fibrin was evaluated by measuring the remaining mass ratio of non-modified fibrin, PEG:Fib 10:1, and PEG:Fib 5:1 hydrogels after 1, 2, 3, 5, 8, 11, and 15 days. The results showed that PEGylated fibrin hydrogels enhanced scaffold stability and supported cell viability and proliferation. In addition, PEG:Fib 5:1 T50 indicated a significantly higher cell density dynamic and non-significantly lower expression of caspase-3 on day 5. Besides, uniformity of cell distribution inside the hydrogel and a tendency to a high rate of Ki67-positive cells was observed in PEG:Fib 10:1 T50 hydrogels. In conclusion, this study reveals the positive effects of PEGylated fibrin hydrogels on isolated human ovarian stromal cells. Based on such promising findings, we believe that this matrix should be tested to encapsulate isolated human ovarian follicles.  相似文献   

16.
A new photosensitizer, presently designated QLT0074, may have the potential for the treatment of immune and nonimmune conditions with photodynamic therapy (PDT). The activity of QLT0074 was tested against human peripheral blood T cells and Jurkat T lymphoma cells. At low nanomolar concentrations of QLT0074 in combination with blue light, apoptosis was rapidly induced in Jurkat and blood T cells in vitro as indicated by the expression of the apoptosis-associated mitochondrial 7A6 marker and Annexin-V labeling. Further studies performed with Jurkat T cells showed that PDT-induced apoptosis with QLT0074 was associated with caspase-3 activation and the cleavage of the caspase substrate poly(adenosine diphosphate-ribose)polymerase. Flow cytometry studies revealed that blood T cells with high expression of the interleukin-2 receptor (CD25) took up greater amounts of QLT0074 and were eliminated to a greater extent with PDT than T cells with low levels of this activation marker. This selective action of PDT was confirmed by similar reductions in the percentage of T cells that expressed other activation-related markers, including very late activation antigen-4 (CD49d), human leukocyte antigen DR (HLA-DR), intercellular adhesion molecule-1 (CD54) and Fas (CD95). For activated T cells treated with a specific dose of QLT0074 and light 24 h earlier, CD25 expression density was significantly less, whereas CD54, CD95 and HLA-DR levels were similar to those for control cells treated with light alone. This work shows that PDT with QLT0074 exerts selective, dose-related effects on T cells in vitro.  相似文献   

17.
Human embryonic stem (hES) cells are capable of differentiating into pluralistic cell types, however, spontaneous differentiation generally gives rise to a limited number of specific differentiated cell types and a large degree of cell heterogeneity. In an effort to increase the efficiency of specified hES cell differentiation, we performed a series of transient transfection of hES cells with EGFP expression vectors driven by different promoter systems, including human cellular polypeptide chain elongation factor 1 alpha (hEF1alpha), human cytomegalo-virus, and chicken beta-actin. All these promoters were found to lead reporter gene expression in undifferentiated hES cells, but very few drug-selectable transfectants were obtained and failed to maintain stable expression of the transgene with either chemical or electroporation methods. In an attempt to increase transfection efficiency and obtain stable transgene expression, differentiated hES cells expressing both mesodermal and ectodermal markers were derived using a defined medium. Differentiated hES cells were electroporated with a hEF1alpha promoter-driven EGFP or human noggin expression vector. Using RT-PCR, immunocytochemistry and fluorescence microscopy, the differentiated hES cells transfected with foreign genes were confirmed to retain stable gene and protein expression during prolonged culture. These results may provide a new tool for introducing exogenous genes readily into hES cells, thereby facilitating more directed differentiation into specific and homogenous cell populations.  相似文献   

18.
R Wilson 《The Analyst》1992,117(10):1547-1551
Thyroid stimulating hormone (TSH) regulates the function of the thyroid gland. Its determination at low concentrations in serum is useful in the diagnosis of hyperthyroidism. In this paper, it is detected using a spectrophotometric enzyme-amplified immunoassay. The reporter enzyme is alkaline phosphatase and its substrate is flavin adenine dinucleotide phosphate (FADP). Reaction with alkaline phosphatase converts FADP into flavin adenine dinucleotide (FAD), which, unlike FADP, re-activates apo-D-amino acid oxidase (apo-AOD). Re-activation of apo-AOD allows the product of the reporter enzyme to be amplified. The lower limit of detection for TSH by this method is 0.06 microU cm-3. This compares with 0.54 microU cm-3 for an identical assay in which p-nitrophenyl phosphate was the substrate for alkaline phosphatase. Contaminating alkaline phosphatase was removed from the reagents by affinity chromatography.  相似文献   

19.
Cancer cells show alterations in metabolism that support malignancy and disease progression. Prominent among these metabolic changes is elevations in neutral ether lipids (NELs). We have previously shown that the hydrolytic enzyme KIAA1363 (or AADACL1) is highly elevated in aggressive cancer cells, where it plays a key role in generating the monoalkylglycerol ether (MAGE) class of NELs. Here, we use activity-based protein profiling-guided medicinal chemistry to discover a highly potent and selective inhibitor of KIAA1363, the carbamate JW480. We show that JW480, and an shRNA probe that targets KIAA1363, reduce MAGEs and impair the migration, invasion, survival, and in?vivo tumor growth of human prostate cancer cell lines. These findings indicate that the KIAA1363-MAGE pathway is important for prostate cancer pathogenesis and designate JW480 as a versatile pharmacological probe for disrupting this pro-tumorigenic metabolic pathway.  相似文献   

20.
The scarcity of effective means to deliver functional proteins to living cells is a central problem in biotechnology and medicine. Herein, we report the efficient delivery of an active DNA‐modifying enzyme to human stem cells through high‐density cell penetrating peptide brush polymers. Cre recombinase is mixed with a fluorophore‐tagged polymer carrier and then applied directly to induced pluripotent stem cells or HEK293T cells. This results in efficient delivery of Cre protein as measured by activation of a genomically integrated Cre‐mediated recombination reporter. We observed that brush polymer formulations utilizing cell penetrating peptides promoted Cre delivery but oligopeptides alone or oligopeptides displayed on nanoparticles did not. Overall, we report the efficient delivery of a genome‐modifying enzyme to stem cells that may be generalizable to other, difficult‐to‐transduce cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号