首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

2.
The structure of solid high-conductance potassium electrolytes K1 − x Al1 − x TixO2 (x = 0.1; 0.2) at 25 and 575°C is studied by a powder neutron diffraction analysis with the application of full-profile Rietveld analysis. Inserting titanium ions removes in potassium aluminate the phase transition at 540°C and the conductance anisotropy typical for its low-temperature form. Both structures are identical (fcc lattice, space group Fd3m). Experiment and calculation coincide best under the assumption that the potassium sublattice is disordered. The conductance increase upon inserting ions Ti4+ is due, apart from stabilization of the fcc structure, to formation of additional potassium vacancies and larger channels for the migration of potassium cations (ions Ti4+ are larger than ions Al3+).__________Translated from Elektrokhimiya, Vol. 41, No. 7, 2005, pp. 878–883.Original Russian Text Copyright © 2005 by Burmakin, Voronin, Akhtyamova, Berger, Shekhtman.  相似文献   

3.
The phase diagrams of the systems KF-K2TaF7 and KF-Ta2O5 were determined using the thermal analysis method. The phase diagrams were described by suitable thermodynamic model. In the system KF-K2TaF7 eutectic points at x KF=0.716 and t=725.4°C and at x KF=0.214 and t=712.2°C has been calculated. It was suggested that K2TaF7 melts incongruently at around 743°C forming two immiscible liquids. The system KF-Ta2O5 have been measured up to 8 mol% of Ta2O5. The eutectic point was estimated to be at x KF∼0.9 and t∼816°C. The formation of KTaO3 and K3TaO2F4 compounds has been observed in the solidified samples.  相似文献   

4.
Phase equilibria in the Ca3(VO4)2-K3VO4-NdVO4 system have been studied. An extensive calcium orthovanadate-based solid solution was found to form with the boundary compositions as follows: Ca3(VO4)2-Ca9Nd(VO4)7-Ca9.33K2.33(VO4)7-Ca7.88K2.63Nd0.87(VO4)7. The unit cell parameters of the whit-lockite vanadates synthesized increase as the potassium and neodymium contents increase. Phase transitions from the low-temperature β phase to the β′ centrosymmetrical structure in Ca9.33 − 5z K2.33 + z Nd3z (VO4)7 vanadates have been studied dilatometrically. The increase in the β ai β′ transition temperature caused by potassium is interpreted as arising from the filling in of vacant cation positions M(4) and M(6).  相似文献   

5.
Metal ions sorption can be significantly affected by the presence of other sorbates, especially of complexing ligands. In this study, the effect of Se(IV) on Eu(III) sorption onto TiO2 at different pH and Eu(III) concentration was investigated. Se(IV) was found to enhance Eu(III) sorption as a function of Se(IV) concentration. Constant capacitance model was successfully used to interpret the sorption experimental data. The solubility product of Eu2(SeO3)3 at ambient temperature was investigated to highlight the sorption mechanism of ternary sorption system. The pK sp value of Eu2(SeO3)3 was found to be 31.51 ± 0.95.  相似文献   

6.
Summary Heat capacity measurements of the two-dimensional metal-assembled complex, (NEt4)[{MnIII(salen)}2FeIII(CN)6] [Et=ethyl, salen= N,N’-ethylenebis(salicylideneaminato) dianion], were performed in the temperature range between 0.2 and 300 K by adiabatic calorimetry. A ferrimagnetic phase transition was observed at Tc1=7.51 K. Furthermore, another small magnetic phase transition appeared at Tc2=0.78 K. Above Tc1, a heat capacity tail arising from the short-range ordering of the spins characteristic of two-dimensional magnets was found. The magnetic enthalpy and entropy were evaluated to be ΔH=291 J mol-1 and ΔS=27.4 J K-1 mol-1, respectively. The experimental magnetic entropy agrees roughly with ΔS=Rln(5·5·2) (=32.5 J K-1 mol-1; R being the gas constant), which is expected for the metal complex with two Mn(III) ions in high-spin state (spin quantum number S=2) and one Fe(III) ion in low-spin state (S=1/2). The heat capacity tail above Tc1 became small by grinding and pressing the crystal. This mechanochemical effect would be attributed to the increase of lattice defects and imperfections in the crystal lattice, leading not only to formation of the crystal with a different magnetic phase transition temperature but also to decrease of the magnetic heat capacity and thus the magnetic enthalpy and entropy.  相似文献   

7.
Solid-phase interactions in the V2O5-Ta2O5-MoO3 system were studied. The formation of com- pounds TaVO5 and VTa9O25 in the V2O5-Ta2O5 binary system was verified. Tetragonal VTa9O25-base solid solutions of the general formula Ta5 + 4x V5 − 4x O25 (x = 0.25–1) and TaVO5-base solid solutions of the general formula Ta x Mo1 − x V2 − x O8 − 3x (x = 0.625–1) were found to form. Subsolidus phase equilibria in the V2O5-Ta2O5-MoO3 were determined.  相似文献   

8.
Phase relations in the solid state in the FeVO4–Co3V2O8 system, in the whole range of components concentration have been studied. It was found that the composition of the phase of the howardevansite type structure, formed in the investigated system, corresponds with the Co2.616Fe4.256V6O24 formula. The phase of the lyonsite type structure has a homogeneity range with the Co3+1.5xFe4–xV6O24 formula (0.476 formula (0.476<x<1.667). The melting temperature and the volume of the unit cell of the lyonsite type structure phase increases together with the rise of cobalt quantity contained in it. Basing on the results of the DTA and XRD measurements a phase diagram of the FeVO4–Co3V2O8 system up to the solidus line was constructed.  相似文献   

9.
A new phase Cd4Fe7+xV9+xO37+4x, where −0.5<x<1.5, has been obtained in the solid-state in the FeVO4−Cd4V2O9 system. The temperature of incongruent melting and the unit cell volume of this phase decrease with decreasing the content of cadmium. The IR spectrum and SEM image of the new phase are presented.  相似文献   

10.
Synthesis of five binary complex salts with an [Ir(NH3)5Cl]2+ complex cation is described. The counterions are [ReCl6]2–, [IrCl6]2–, [ReBr6]2–, and Cl. A polycrystal X-ray diffraction study has been performed for [Ir(NH3)5Cl]2[ReCl6]Cl2, and its crystal structure has been determined. A series of Ir x Re1–x phases (0.5 x > 1) were obtained by reductive thermolysis. For the Ir-Re system, the history of the V/Z(x) dependence has been refined.Original Russian Text Copyright © 2004 by S. A. Gromilov, S. V. Korenev, I. V. Korolkov, K. V. Yusenko, and I. A. BaidinaTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 508–515, May–June 2004.  相似文献   

11.
The 950°C isothermal section of the InPO4-Na3PO4-Li3PO4 ternary system was studied and constructed; one-, two, and three-phase fields are outlined. Five solid-solution regions exist in the system: solid solutions based on the complex phosphate LiNa5(PO4)2 (olympite structure), the indium ion stabilized high-temperature Na3PO4 phase (Na3(1 − x)In x (PO4); space group Fm [`3]\bar 3 m), the complex phosphate Na3In2(PO4)3, and the α and β phases of the compound Li3In2(PO4)3. A narrow region of melt was found in the vicinity of eutectic equilibria. All the phases detected in the system are derivatives of phases existing in the binary subsystems. Isovalent substitution of lithium for sodium in Na3In2(PO4)3 leads to a significant increase in the region of a NASICON-like solid solution.  相似文献   

12.
Phase transitions and cation mobility in double molybdates K2M 2 II (MoO4)3 with M = Mg or Co and the products of their heterovalent doping with scandium(III) and vanadium(V) have been studied. The transition from low to high conductivity in K2M 2 II (MoO4)3 is the result of a two-stage phase transition, whose occurrence is significantly extended in time. Heterovalent substitutions noticeably decrease the heat of the phase transition. The transition to the low-temperature phase is not achieved even after long-term exposure.  相似文献   

13.
The structure of Zn3P2 (P 42/nmc, a = b = 8. 0785 Å, c = 11. 3966 Å) was solved and refined to R = 3. 2% in a precision X-ray diffraction experiment (λ-MoK a, graphite monochromator on a primary beam, 27,496 reflections) . Interatomic distances and bond angles have been determined. The fcc lattice of the structure is built from phosphorus atoms, and the zinc atoms occupy 3/4 of all tetrahedral voids; the structure is described by two equivalent models where 1/4 occupied (by zinc atoms) and 1/4 vacant voids change places. The zinc atoms that occupy the voids following the diamond principle do not change places.Original Russian Text Copyright © 2004 by I. E. Zanin, K. B. Aleinikova, M. M. Afanasiev, and M. Yu. Antipin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 889–892, September–October, 2004.  相似文献   

14.
Microstructure and conduction of ceramic composites Bi2CuO4 + xBi2O3 (x = 5, 10, 15, 20 wt %) near the eutectic melting point (770°C) are studied. Bismuth oxide, initially randomly distributed over the ceramics bulk, after quenching from temperatures exceeding the eutectic melting point, becomes localized at triple junctions and grain boundaries in Bi2CuO4, which is caused by wetting grain boundaries and forming a liquid-channel structure. The jumpwise change in the composites’ conductivity near 730 and 770°C caused by polymorphic transformation of Bi2O3 and the eutectic melting with simultaneous formation of a liquid-channel structure. Transport numbers of the oxygen ion are measured at 770°C by coulomb-volumetric method. The conduction by oxygen ions increases in the composites with decreasing average size of Bi2CuO4 crystallites.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 596–601.Original Russian Text Copyright © 2005 by Lyskov, Metlin, Belousov, Tret’yakov.  相似文献   

15.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

16.
The phase diagram of the system CdI2-Bi2O3 is studied by means of X-ray diffraction, differential thermal analysis and measurements of the density of the material. As a result of the synthetic and peritectic interactions, two incongruently melting intermediate phases i.e. phase A — CdI2·2Bi2O3 and phase B — CdI2·4Bi2O3 (stable in the temperature interval 370–850°C) are formed.The phase A exists in two polymorphic forms with a temperature of the phase transition T =320–370°C. The unit cell parameters at low temperature modification of -CdI2°2Bi2O3 were determined. (a=1.032 nm, b=1.046 nm, c=1.046 nm, =115.02°, =109.11° and =82.04°). The phases A and B have fields of homogeneity.The authors acknowledge thankfully the financial support for this work from the Ministry of Education and Science (Fond Scientific investigations — contract TN-1102).  相似文献   

17.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

18.
Summary We have fabricated glasses in the Bi-2223 HTc superconductor system with Bi2Sr2Ca2Cu3-xErxO10+ δ nominal composition, where x=0.5 and 1.0, by the glass-ceramic technique. Using an analysis developed for non-isothermal crystallization studies, information on some aspects of crystallization temperature and thermal properties has been obtained. The crystallization studies were made using DTA with several uniform rates. The calculations of crystallization activation energies, Ea, and the Avrami parameters, n, were made based on the non-isothermal kinetic theory of Kissinger and the Ozawa’s equations. The DTA data of the samples showed that the first crystallization temperature, Tx1, increases and the second crystallization temperature, Tx2, decreases by increasing the Er concentration. This suggests that the Er substitution had significant effect on the glassification of the BSCCO material due to change on the surface nucleation and increased ionic activities at high temperature region. The activation energy for crystallization, Ea, of the samples was also showed an increase at high Er concentration case. However, the Avrami parameter, n, decreased from 2.5 to 1.7 for x=0.5 and 1.0 samples, respectively. This suggests that the growth mechanism is diffusion-controlled and three-dimensional parabolic growth takes place near the first crystallization temperature. The oxidization rates and the activation barrier for oxygen out-diffusion process, E, was calculated using the TG data. It was found that the total mass gain in the x=0.5 sample is comparably smaller than that of the x=1.0 sample. This shows that the oxygen absorption of the x=1.0 sample is faster than the x=0.5 sample, leading to increase in the oxidization rate in the x=1.0 material.  相似文献   

19.
Perovskite Bi1−x Y x FeO3 (0.0 ≤ x ≤ 0.1) oxides were prepared by a citrate-gel method. The crystal structure examined by X-ray powder diffraction indicates that the samples were single-phase and crystallize in a rhombohedral (space group, R-3c no. 161) structure. The structural phase transition from rhombohedral to orthorhombic phase was observed at x = 0.10. Increase in magnetization was observed as a result of Y doping. The optical band-gap of (Bi, Y)FeO3 materials were determined. The observed increase in magnetization and low band-gap of (Bi, Y)FeO3 ceramics position them for potential magenotoelectric and photocatalytic applications, respectively.  相似文献   

20.
Summary This work reports the room-temperature stabilization of the Bi4V2-xFexIIO11-1.5x γ ‘ phase, a promising ionic conductive material that finds application in solid oxide fuel cell and oxygen sensor devices. The Fe(II) cation proved to be a better stabilizer than Fe(III), which was previously used, since a lower substitution degree of V5+ is needed for the former. Powder X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimetry were used in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号