首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
骨小梁材料特性对超声背散射信号的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于时域有限差分法(FDTD)建立了松质骨的超声背散射仿真系统,研究了骨小梁材料特性对超声背散射信号的影响。首次得到松质骨中的超声背散射系数(BSC)和积分背散射系数(IBC)随骨小梁材料参数(密度、拉梅常数、黏度系数及声阻抗系数)的变化关系。研究结果表明,IBC随骨小梁密度的增加而增加;BSC和IBC随拉梅常数的增加而增加、随第一黏度系数的增加而近似线性地减小,第二黏度的变化对背散射信号的影响很小;背散射参数随阻抗系数的增加而减小。说明松质骨中的超声背散射特性不仅受骨矿密度(BMD)和骨微结构的影响,还与骨小梁的材料参数密切相关。研究结果有利于理解松质骨中超声的背散射特性,对松质骨骨质状况的评价有一定帮助。   相似文献   

2.
他得安  王威琪 《应用声学》2013,32(3):199-204
超声背散射法评价松质骨状况及诊断骨质疏松症是近年来医学超声领域内的研究热点之一,现已取得了显著的进展。本文将介绍近年来超声背散射法及其参量评价松质骨状况的研究进展,并分析超声背散射相关参量频谱质心偏移量(SCS)和平均骨小梁间距(TbSp)与骨矿密度(BMD)的相关性。研究结果表明,超声背散射参量与BMD有较高的相关性。最后提出了将来研究中需要努力的方向。  相似文献   

3.
基频估计算法研究平均骨小梁间距   总被引:1,自引:0,他引:1  
超声背散射信号能提供松质骨微结构信息从而能有效的诊断骨质疏松,而平均骨小梁间距(MTBS)是表征松质骨微结构的重要参数之一.本文提出了一种基频估计的MTBS估计算法,对仿真信号和离体牛胫骨松质骨中的超声背散射信号分别进行分析处理,并和现有的两种算法(简易反向滤波跟踪(SIFT)算法和AR倒谱法)进行比较.实验结果表明基频估计算法对噪卢和随机散射回波有更好的鲁棒性,在信噪比较低和随机散射回波幅度较大时估计值更加精确,且有很好的方差性能.充分说明了本文算法是一种有效的MTBS估计算法.  相似文献   

4.
应用X射线显微CT(X-μCT)对正常及骨质疏松大鼠的骨小梁结构进行了分析,并与骨组织形态计量法的测量值进行了比较,探讨了X射线光谱技术在骨结构分析中的应用。实验对大鼠骨样品进行X-μCT扫描,扫描条件为 80 kVp,80 μA,360°旋转,帧平均4帧,角度增益 0.4°,分辨率14 μm。三维重建并分析了骨小梁结构,结构参数包括骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数量(Tb.N)以及骨小梁间隔(Tb.Sp)。结果表明,采用X-μCT分析不同组大鼠的骨小梁结构参数值之间存在显著差异(P<0.05),测定值与传统骨组织形态计量法的测定值显著相关,其中胫骨骨小梁BV/TV,Tb.Th,Tb.N,Tb.Sp的相关系数r分别为0.984,0.960,0.995,0.988,腰椎骨小梁各结构参数的相关系数分别为0.938,0.968,0.877,0.951。因此,X-μCT可以较好地呈现并区分正常骨组织、骨质疏松骨组织以及经雌激素治疗后骨组织的微观结构,可以实现对骨小梁结构参数的分析测定,与骨组织形态计量法相比是一种更精确、立体、快速且无损测量骨微结构和评价骨质量的方法。  相似文献   

5.
平均骨小梁间距作为松质骨微结构的重要表征参数,其值可作为诊断骨质疏松的重要参考信息。提出将二次变换法运用于骨小梁间距的估算,探究其运用于骨小梁间距估算的可行性。通过散射元仿真、时域有限差分法仿真和离体松质骨实验所得到松质骨背散射信号进行分析,同时以自回归倒谱法(AR倒谱法)、反向滤波-自回归倒谱法(反向滤波-AR倒谱法)、自适应滤波-自回归倒谱法(自适应滤波-AR倒谱法)和简易反向滤波跟踪(SIFT)算法作为对比方法进行分析,通过对比证明了其可行性和相比于其他方法的优越性。结果表明,不管是利用仿真实验还是牛胫骨的离体实验所得信号估算骨小梁间距,二次变换法比其他算法具有更强的测量稳定性和准确性。   相似文献   

6.
平均骨小梁间距作为松质骨微结构的重要表征参数,其值可作为诊断骨质疏松的重要参考信息。提出将二次变换法运用于骨小梁间距的估算,探究其运用于骨小梁间距估算的可行性。通过散射元仿真、时域有限差分法仿真和离体松质骨实验所得到松质骨背散射信号进行分析,同时以自回归倒谱法(AR倒谱法)、反向滤波-自回归倒谱法(反向滤波-AR倒谱法)、自适应滤波-自回归倒谱法(自适应滤波-AR倒谱法)和简易反向滤波跟踪(SIFT)算法作为对比方法进行分析,通过对比证明了其可行性和相比于其他方法的优越性。结果表明,不管是利用仿真实验还是牛胫骨的离体实验所得信号估算骨小梁间距,二次变换法比其他算法具有更强的测量稳定性和准确性。  相似文献   

7.
在超声背散射骨质评价中,不同测量感兴趣区域(ROI)的超声背散射信号会有波动,致使诊断准确度降低。该文目的是研究超声背散射信号随测量区域的变化规律。采用空间扫描方法离体测量了35块骨样本,将超声背散射参数从空间域变换到空间频率域。结果表明,超声背散射参数的主要空间频率成分集中于低频部分;空间频率域超声背散射参量最大值(MASF)与骨矿密度等参数具有中高度显著相关性(R2=0.45~0.83,p0.001);空间频率域超声背散射参量衰减系数(AC)也与松质骨密度及结构特征有显著相关性(R2=0.41~0.72,p0.001)。研究表明空间频率域变换方法有助于明确超声背散射信号随测量ROI的变化规律,空间频率域的超声背散射相关新参量评价松质骨状况具有可行性。  相似文献   

8.
研究了基于全波反演(FWI)的骨骼超声层析成像方法,用于动态监测骨质疏松性微结构退化的进程。采用雌性小鼠注射药物建立骨质疏松症模型,在第0, 2, 4, 6周通过Micro-CT扫描活体小鼠,重建获得小鼠股骨骨骼结构。以第0周骨骼结构为基准输入模型,通过不同的超声收发模式(透射、反射及透射-反射双模式),仿真分析了FWI监测不同骨质疏松进程的骨微结构退化的效果。结果表明,初始模型为均匀介质(纯水)时, FWI反演失效,不能准确重建骨骼结构。初始模型中考虑了基准骨骼结构(第0周)时, FWI能准确反演骨骼组织声速(均方根误差(RMSE)<17 m/s,平均相对误差(MRE)<7.2%),精确重建骨骼结构(结构相关系数(CC)> 0.85)),因此可以准确监测不同骨质疏松进程(第2, 4, 6周)的骨微结构退化情况。对比不同超声收发模式,透射-反射双模式FWI监测骨微结构退化的性能优于单一透射或反射FWI监测方法。考虑了基准骨骼模型的FWI可用于动态监测骨微结构退化,对评估骨质疏松进展具有一定意义。  相似文献   

9.
宋永锋  李雄兵  史亦韦  倪培君 《物理学报》2016,65(21):214301-214301
超声背散射法可通过多晶体金属内部的空间方差信号,实现微观结构参数的无损评价,但表面粗糙度对评价模型的精度及实用性存在显著影响.基于高斯声束理论推导垂直入射粗糙界面的纵波声场,以此研究声能的Wigner分布规律;在超声的波长远大于粗糙度的前提下,构造表面粗糙度修正系数,并建立粗糙界面的单次散射响应模型,揭示粗糙度对超声波背向散射的影响规律.用304不锈钢制备轮廓均方根值为0.159μm的光滑试块和25.722μm的粗糙试块开展超声背散射实验,结果表明模型在粗糙度修正前后均可实现光滑试块的晶粒尺寸有效评价,但未经修正的传统模型对粗糙试块的晶粒尺寸评价结果与金相法结果的相对误差高达-21.35%,而本模型的评价结果与金相法结果符合得很好,相对误差仅为1.35%.可见,本模型能有效补偿粗糙度引起的超声背散射信号衰减,从而提高晶粒尺寸无损评价的精度.  相似文献   

10.
镍基高温合金GH4742具有优异的机械性能,而晶粒尺寸是影响其性能的关键因素.基于物理模型的超声背散射法可以实现晶粒尺寸高效和准确的评价,但受限于复杂模型或多角度声束测量.因此,本文提出了一种只需单向测量的背散射系数法,且无需考虑测量系统等无关因素的影响.基于独立散射模型,推导了只与材料相关的背散射系数;利用空间相关函数描述了晶粒尺寸与背散射系数的关系;采用参考信号剔除干扰因素的影响,实现实验背散射系数的快速提取.制备三组不同晶粒尺寸的GH4742试块进行相控阵超声实验和平均晶粒尺寸评价,并与金相法结果进行对比.结果表明本文方法得到的晶粒度与金相法结果最大相对误差为–22.7%,最小相对误差为–3.7%.  相似文献   

11.
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.  相似文献   

12.
A model describing the frequency dependence of backscatter coefficient from trabecular bone is presented. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long thin cylinders with radii small compared with the ultrasonic wavelength. Experimental ultrasonic measurements at 500 kHz, 1 MHz, and 2.25 MHz from a wire target and from trabecular bone samples from human calcaneus in vitro are reported. In both cases, measurements are in good agreement with theory. For mediolateral insonification of calcaneus at low frequencies, including the typical diagnostic range (near 500 kHz), backscatter coefficient is proportional to frequency cubed. At higher frequencies, the frequency response flattens out. The data also suggest that at diagnostic frequencies, multiple scattering effects on the average are relatively small for the samples investigated. Finally, at diagnostic frequencies, the data suggest that absorption is likely to be a larger component of attenuation than scattering.  相似文献   

13.
Ultrasonic backscatter signals from the cancellous bone can be used to diagnose osteoporosis effectively due to its ability to provide the information of bone microstructure. Mean trabecular bone spacing(MTBS)is one of the important parameters for characterization of bone microstructure.This paper proposed a MTBS estimating method based on the fundamental frequency estimation,which was applied to backscatter signals from simulations, and in vitro bovine trabeculae.The estimated MTBS were compared with those of simplified inverse filter tracking(SIFT)algorithm and autoregressive(AR)cepstrum method.The results demonstrated that the proposed method is very robust for the MTBS estimation with more precise estimates and smaller estimated variance in the presence of a small signal-to-noise ratio (SNR),and a large scattering strength ratio of diffuse scatterers to regular ones.  相似文献   

14.
An experimental model which can simulate physical changes that occur during aging was developed in order to evaluate the effects of change of mineral content and microstructure on ultrasonic properties of bovine cancellous bone. Timed immersion in hydrochloric acid was used to selectively alter the mineral content. Scanning electron microscopy and histological staining of the acid-treated trabeculae demonstrated a heterogeneous structure consisting of a mineralized core and a demineralized layer. The presence of organic matrix contributed very little to normalized broadband ultrasound attenuation (nBUA) and speed of sound. All three ultrasonic parameters, speed of sound, nBUA and backscatter coefficient, were sensitive to changes in apparent density of bovine cancellous bone. A two-component model utilizing a combination of two autocorrelation functions (a densely populated model and a spherical distribution) was used to approximate the backscatter coefficient. The predicted attenuation due to scattering constituted a significant part of the measured total attenuation (due to both scattering and absorption mechanisms) for bovine cancellous bone. Linear regression, performed between trabecular thickness values and estimated from the model correlation lengths, showed significant linear correlation, with R(2)=0.81 before and R(2)=0.80 after demineralization. The accuracy of estimation was found to increase with trabecular thickness.  相似文献   

15.
Various models for ultrasonic scattering from trabecular bone have been proposed. They may be evaluated to a certain extent by comparison with experimental measurements. In order to appreciate limitations of these comparisons, it is important to understand measurement precision. In this article, an approach proposed by Lizzi and co-workers is adapted to model precision of estimates of frequency-dependent backscatter for scattering targets (such as trabecular bone) that contain many scatterers per resolution cell. This approach predicts uncertainties in backscatter due to the random nature of the interference of echoes from individual scatterers as they are summed at the receiver. The model is validated in experiments on a soft-tissue-mimicking phantom and on 24 human calcaneus samples interrogated in vitro. It is found that while random interference effects only partially explain measured variations in the magnitude of backscatter, they are virtually entirely responsible for observed variations in the frequency dependence (exponent of a power law fit) of backscatter.  相似文献   

16.
A weak scattering model was proposed for the ultrasonic frequency-dependent backscatter in dense bovine cancellous bone, using two autocorrelation functions to describe the medium: one with discrete homogeneities (spherical distribution of equal spheres) and another, which considers tissue as an inhomogeneous continuum (densely populated medium). The inverse problem to estimate trabecular thickness of bone tissue has been addressed. A combination of the two autocorrelation functions was required to closely approximate the backscatter from bovine bone with various microarchitecture, given that the shape of trabeculae ranges from a rodlike to a platelike shape. Because of the large variation in trabecular thickness, both at an intraspecimen and an interspecimen level, thickness distributions for individual trabeculae for each bone specimen were obtained, and dominant trabecular sizes were determined. Comparison of backscatter measurements to theoretical predictions indicated that there were more than one dominant trabecular sizes that scatter sound for most specimens. Linear regression, performed between dominant trabecular thickness and estimated correlation length, showed significant linear correlation (R(2)=0.81). Attenuation due to scattering by a continuous distribution of scatterers was predicted to be linear over a frequency range from 0.3 to 0.9 MHz, suggesting a possibility that scattering may be a significant source of attenuation.  相似文献   

17.
Although bone sonometry has been demonstrated to be useful in the diagnosis of osteoporosis, much remains to be learned about the processes governing the interactions between ultrasound and bone. In order to investigate these processes, ultrasonic attenuation and backscatter in two orientations were measured in 43 human calcaneal specimens in vitro at 500 kHz. In the mediolateral (ML) orientation, the ultrasound propagation direction is approximately perpendicular to the trabecular axes. In the anteroposterior (AP) orientation, a wide range of angles between the ultrasound propagation direction and trabecular axes is encountered. Average attenuation slope was 18% greater while average backscatter coefficient was 50% lower in the AP orientation compared with the ML orientation. Backscatter coefficient in both orientations approximately conformed to a cubic dependence on frequency, consistent with a previously reported model. These results support the idea that absorption is a greater component of attenuation than scattering in human calcaneal trabecular bone.  相似文献   

18.
Padilla F  Jenson F  Laugier P 《Ultrasonics》2006,44(Z1):e57-e60
The goal of this study is to propose a model for the ultrasonic frequency-dependent backscatter coefficient in femoral cancellous bone. This model has been developed with success to predict backscatter in human calcaneal bone [Jenson, Ultr. Med. Biol. 2003]. A weak scattering model is used and the backscatter coefficient is expressed in terms of a Gaussian autocorrelation function of the medium. The backscatter coefficient is computed and comparison is made with experimental data for 37 specimens and for frequency ranging from 0.4 to 1.2 MHz. An excellent agreement between experimental data and predictions is found for both the magnitude and the frequency-dependence of the backscatter coefficient. Then, a nonlinear regression is performed for each specimen, and the mean trabecular thickness is estimated. Experimental data and theoretical predictions are averaged over the 37 specimens. We also find a close agreement between theoretical predictions obtained using the Gaussian autocorrelation function (scatterer size=134+/-15 microm) and the mean trabecular thickness (Tb.Th=132+/-12 microm) derived from the analysis of bone 3-D micro-architecture using high-resolution micro-tomography. However, the correlation between individual experimental and estimated Tb.Th values is moderate (R(2)=0.44). The performance of the estimator are limited mainly by two factors: interference noise due to random positioning of the scatterers and attenuation. We show that the fundamental limitation of our estimator due to the speckle noise is around 5 microm for trabecular thickness estimation. This limitation is lower than the observed biological variability which is around 30 microm and should not be a limiting factor for individual prediction. A second limitation is the tremendous attenuation encountered in highly scattering media such as cancellous bone, which results in highly damped backscatter signals. The compensation for attenuation is difficult to perform, and it may be a critical point that limits the precision of the estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号