首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystalline Sn doped In(2)O(3) (ITO) NWs (nanowires) were synthesized via an Au-catalyzed VLS (vapor-liquid-solid) method at 600 °C. The different sizes (~20, ~40, ~80 nm) of the Au NPs (nanoparticles) provided the controllable diameters for ITO NWs during growth. Phase and microstructures confirmed by high-resolution transmission electron microscope images (HRTEM) and X-ray diffraction (XRD) spectra indicated that the phase of In(2)O(3) NWs had a growth direction of [100]. X-ray photoelectron spectroscopy (XPS) was employed to obtain the chemical compositions of the ITO NWs as well as the ratio of Sn/In and oxygen concentrations. The findings indicated that low resistivity was found for ITO NWs with smaller diameters due to higher concentrations of oxygen vacancies and less incorporation of Sn atoms inside the NWs. The resistivity of NWs increases with increasing diameter due to more Sn atoms being incorporated into the NW and their reduction of the amount of oxygen vacancies. Low resistivity NWs could be achieved again due to excess Sn atoms doped into the large diameter NWs. Therefore, by optimizing the well-controlled growth of the NW diameter and interface states, we are able to tune the electrical properties of Sn-doped ITO NWs.  相似文献   

2.
设计合成了一种新型的有机硅氧烷Cz-Si,并将其用于ITO自组装修饰。制备的Cz-Si具有较好的稳定性,可以在空气中对ITO进行自组装修饰,实验操作简单。为考察ITO自组装修饰对有机电致发光器件性能的影响,分别以修饰后的ITO(ITO/SAM)及不修饰的ITO(unmodified)作阳极,制备了一系列有机电致发光器件ITO/SAM(or unmodified)/NPB(40~50 nm)/Alq3(60 nm)/LiF(1.0 nm)/Al。实验结果表明,ITO自组装修饰后器件性能可以得到显著提升,研究认为这与其调控ITO/有机层界面的电子能级、粗糙度以及界面一致性有关。  相似文献   

3.
设计合成了一种新型的有机硅氧烷Cz-Si,并将其用于ITO自组装修饰。制备的Cz-Si具有较好的稳定性,可以在空气中对ITO进行自组装修饰,实验操作简单。为考察ITO自组装修饰对有机电致发光器件性能的影响,分别以修饰后的ITO(ITO/SAM)及不修饰的ITO(unmodified)作阳极,制备了一系列有机电致发光器件ITO/SAM(orunmodified)/NPB(40~50nm)/Alq3(60nm)/LiF(1.0nm)/Al。实验结果表明,ITO自组装修饰后器件性能可以得到显著提升,研究认为这与其调控ITO/有机层界面的电子能级、粗糙度以及界面一致性有关。  相似文献   

4.
We report a new phenomenon, named here as the "lens" effect, in the directed-assembly process of nanowires (NWs) on self-assembled monolayer (SAM) patterns. In this process, the adsorption of NWs is focused in the nanoscale regions at the center of microscale SAM patterns with gradient surface molecular density just like an optical lens focuses light. As a proof of concepts, we successfully demonstrated the massive assembly of V2O5 NWs and single-walled carbon nanotubes (swCNTs) with a nanoscale resolution using only microscale molecular patterning methods. This work provides us with important insights about the directed-assembly process, and from a practical point of view, it allows us to generate nanoscale patterns of NWs over a large area for mass fabrication of NW-based devices.  相似文献   

5.
Self-assembled monolayers (SAMs) of alkanephosphonic acids with chain lengths between 8 and 18 carbon units were formed on thin films of indium tin oxide (ITO) sputter-deposited on silicon substrates with 400 nm thermally grown SiO(2). The silicon substrates, while not intended for use in near-IR or visible optics applications, do provide smooth surfaces that permit systematic engineering of grain size and surface roughness as a function of the sputter pressure. Argon sputter pressures from 4 to 20 mTorr show systematic changes in surface morphology ranging from smooth, micrometer-sized grain structures to <50 nm grains with 3× higher surface roughness. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments are conducted for alkanephosphonic acids deposited on these wide range of ITO surfaces to evaluate the effects of these morphological features on monolayer ordering. Results indicate that long-chain SAMs are more highly ordered, and have a smaller tilt angle, than short-chain SAMs. Surprisingly, the 1-octadecyl phosphonic acids maintain their order as the lateral grain dimensions of the ITO surface shrink to ~50 nm. It is only when the ITO surface roughness becomes greater than the SAM chain length (~15 ?) that SAMs are observed to become relatively disordered.  相似文献   

6.
A self-assembled monolayer (SAM) of a C60-triosmium cluster complex Os3(CO)7(CNR)(CNR')(mu3-eta2:eta2:eta2-C60) (ZnP-C60; R = (CH2)3Si(OEt)3, R' = ZnP) on an ITO surface exhibits ideal electrochemical responses as well as remarkable enhancement of the photocurrent generation. The diazabicyclooctane (DABCO) binding (ZnP)-C60/ITO/AsA/Pt cell shows the highest photocurrent generation quantum yield (19.5%) ever reported for the molecular photovoltaic cells based on the covalently linked donor-acceptor dyad structures. The high efficiency in photocurrent generation is ascribed to an efficient electron transfer from photoexcited porphyrin to fullerene, revealed by fluorescence lifetime measurements and transient absorption decay profiles. These results provide valuable information on the new strategy for the construction of molecular photonic devices and artificial photosynthetic systems on ITO electrodes.  相似文献   

7.
We describe a photoswitch fabricated on indium tin oxide (ITO) as a self-assembled monolayer (SAM) of two fullerene molecules, a purely organic [60]fullerene that generates an anodic current and a [70]fullerene doped with a single iron atom. This device generates a bidirectional photocurrent upon irradiation at 340 and 490 nm. The new [70]fullerene iron complex bearing three rigid carboxylic acid legs, Fe[C(70)(C(6)H(4)C(6)H(4)COOH)(3)]Cp, generates only a cathodic current upon photoexcitation between 350 and 700 nm, whereas the organic [60]fullerene absorbs at wavelengths shorter than 500 nm. The quantum efficiency of the photocurrent generation by the mixed SAM is comparable to that of a single-component SAM, indicating that the individual diode molecules on ITO generate photocurrents independently with little cross talk.  相似文献   

8.
The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fhbricate highly flexible, transparent and conductive Ag nanowires(NWs) based films. TA modification transformed the PDMS surface from hydrophobicity into hydrophilicity without decreasing the transparence. A sheet resistance(Rs) of 80 Ω/cm^2 with an optical transmittance of 94% was achieved, which was superior to that of indium tin oxide(ITO) films. More importantly, the TA layer enhanced the interaction between Ag NWs and the PDMS substrate. The Ag NWs films on TA modified PDMS substrate exhibited excellent stability in Rs when subjected to a bending test.  相似文献   

9.
A novel ferroceneylazobenzene self-assembled monolayer (SAM) has been constructed on an indium-tin oxide (ITO) electrode via the covalent attachment of 4-(4'-11-ferrocenyl-undecanoxyphenylazo)benzoic acid ( FcAzCOOH) onto a silanized ITO substrate surface and verified by reflectance infrared spectroscopy and water contact angle. Atomic force microscopy (AFM) and cyclic voltammogram (CV) indicated that the FcAzCOOH formed a uniform and reproducible SAM on the ITO electrode with a surface coverage of ca. 1.9 x 10 (-10) mol/cm (2) (87 A (2)/molecule). The reversible photoisomerization behavior of the SAM was characterized by UV-vis spectra. The azo pi-pi* transition band intensity of the SAM gradually decreased with UV (365 nm) irradiation and was almost recovered again when subsequent exposure to ambient room light (400-800 nm). The increased tilt angle of the molecules on the ITO substrate after UV irradiation further confirmed the trans-to- cis isomerization of azobenzene moieties. The CV of the trans- FcAzCOOH modified ITO electrode showed a pair of waves due to redox of the ferrocene groups in the potential range of 0 to +800 mV (vs SCE), and the peak separation of the redox wave became larger after UV irradiation and almost returned to its original value after subsequent exposure to the visible light. Rate-dependent CV curves indicated that the charge transfer rate between the ferrocene species in the SAM and the ITO electrode was slowed down after UV irradiation due to the smaller porosity of the monolayer film and the more compact barrier layer between the redox species and the ITO electrode. It is the first time to directly observe the influence of photoisomerization of the azobenzene moiety on the redox behavior of redox species in the ferroceneylazobenzene-functionalized SAM. The present results provide profound insight into the role of redox microenvironment on electron transfer kinetics and also provide a simple and facile approach to the preparation of photocontrollable electrodes.  相似文献   

10.
The preparation of self-assembled monolayers (SAMs) of organophosphonic acids on indium tin oxide (ITO) surfaces from different solvents (triethylamine, ethyl ether, tetrahydofuran (THF), pyridine, acetone, methanol, acetonitrile, dimethyl sulfoxide (DMSO), or water) has been performed with some significant differences observed. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and contact angle measurement demonstrated that the quality of SAMs depends critically on the choice of solvents. Higher density, more stable monolayers were formed from solvents with low dielectric constants and weak interactions with the ITO. It was concluded low dielectric solvents that were inert to the ITO gave monolayers that were more stable with a higher density of surface bound molecules because higher dielectric constant solvents and solvents that coordinate with the surface disrupted SAM formation.  相似文献   

11.
The characterization of buried interfaces is difficult and often has to be performed by a post‐processing method where the interface is exposed. Hard energy X‐ray photoelectron spectroscopy offers the ability to tune the X‐ray energy and thereby change the information depth. In this work, an inorganic/organic interface was evaluated, namely the poly(3‐hexylthiophene) (P3HT) interface with indium tin oxide (ITO), with relevance to organic photovoltaic devices. P3HT/ITO buried interfaces were examined using three X‐ray energies where the ITO surface was prepared under different pretreatment conditions. The P3HT film protected the ITO surface from adventitious adsorbents and allowed for sensitivity to the buried ITO surface. Robust peak fitting parameters were obtained to model the O 1 s and In 3d lineshapes. The deconvolution of these lineshapes allowed for the clear identification of a surface layer on the ITO which is oxidized to a greater extent than the underlying bulk ITO. The surface oxide layer, composed of indium oxide and indium hydroxide, is deficient of oxygen vacancies and would therefore be expected to act as an insulating barrier on the ITO surface. Peak fitting conditions allowed for an estimation of the relative thicknesses of this insulating layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A new method is described for surface modification of ITO with an electroactive organic monolayer. This procedure was done to enhance hole injection in an electronic device and involves sequential formation of a monolayer of a pi-conjugated organic semiconductor on the indium tin oxide (ITO) surface followed by doping with a strong electron acceptor. The semiconductor monolayer is covalently bound to the ITO, which ensures strong adhesion and interface stability; reduction of the hole injection barrier in these devices is accomplished by formation of a charge-transfer complex by doping within the monolayer. This gives rise to very high current densities in simple single layer devices and double layer light emitting devices compared to those with untreated ITO anodes.  相似文献   

13.
In this report, we show the successful transfer of a sophisticated electroactive immobilization and release strategy to an indium tin oxide (ITO) surface to generate (1) optically transparent, robust, and renewable surfaces, (2) inert surfaces that resist nonspecific protein adsorption and cell attachment, and (3) tailored biospecific surfaces for live-cell high-resolution fluorescence microscopy of cell culture. By comparing the surface chemistry properties on both ITO and gold surfaces, we demonstrate the ITO surfaces are superior to gold as a renewable surface, in robustness (durability), and as an optically transparent material for live-cell fluorescence microscopy studies of cell behavior. These advantages will make ITO surfaces a desired platform for numerous biosensor and microarray applications and as model substrates for various cell biological studies.  相似文献   

14.
Indium tin oxide (ITO) is used as a substrate was covered with 4-[4-(4-methoxy-N-naphthalen-2-ylanilino) phenyl] benzoic acid (MNA) as a self-assembled monolayer (SAM). Poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) were mixed and used as a donor–acceptor in organic solar cell (OSC). The MNA (SAM) layer is used as an interface instead of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) for hole injection. The HOMO-LUMO energy level of MNA-SAM molecule and the electronic charge distribution were calculated theoretically using Chemissian software. The HOMO-LUMO energy level of the MNA is calculated as EHOMO = ?5.10 eV and ELUMO = ?1.60 eV. The OSC modified with MNA showed an efficient performance in the absence of PEDOT: PSS as hole transport layer. The annealing of the ITO/SAM/P3HT: PCBM films at different temperatures are also investigated to study the effect of reducing defects. The interface structures of the organic semiconductor layer on ITO were characterized by Atomic Force Microcopy (AFM). In addition, Kelvin Probe Microscopy (KPM) is used to understand how the annealing changes the surface potential energy of the ITO/SAM substrate. Using the KPM method, which measures the surface potential energy of the films, the energy bands of the ITO were increased to maximum 5.09 eV. The ITO/SAM/P3HT: PCBM film's surface potential was determined to be 0.18 eV after being annealed at 80 °C. The surface potential of the modified films was discovered to be 0.33 V and 0.39 V when the annealing temperature was raised from 80 °C to 120 °C and 160 °C. The maximum device efficiency was demonstrated by the ITO/SAM/P3HT: PCBM film after an hour of annealing at 160 °C.  相似文献   

15.
We have developed a nucleic acid (NA) sensor based on mediated electrochemical oxidation of guanine residues. In this method, oligonucleotide probes are bound to a tin-doped indium oxide (ITO) electrode through a self-assembled phosphonate monolayer. The end carboxyl moiety of the monolayer is activated with carbodiimide and reacted with the amine group of a C6 alkyl linker which has been added to the 5'-end of the oligonucleotide probe. Upon hybridization of the complementary target NA, the hybrid is detected using a redox-active mediator, tris(2,2'-bipyridyl) ruthenium(II). We speculate that the monolayer does not impede electron-transfer since it contains many defect sites when assembled on a polycrystalline ITO surface. These defect sites are accessible to the mediator, but not to NA or proteins. The electrocatalytic current was a linear function of the amount of guanine bound at the electrode surface, with a detection limit of 120 amoles of guanine cm(-2) at 0.28 cm(2) ITO electrodes.  相似文献   

16.
Active catalysts for water oxidation to evolve O(2) are required for the construction of artificial photosynthetic devices that are expected to be promising energy-providing systems in the future. The citrate-stabilized IrO(2) colloid was self-assembled onto an indium tin oxide (ITO) electrode to form a monolayer of the colloidal IrO(2) particles when it was dipped in the colloid solution. The self-assembly could be achieved by a chemical interaction between carboxylate groups on the citrate stabilizer and hydroxyl groups on the ITO surface to form ester bonds. Efficient electrocatalysis for water oxidation was demonstrated using the electrode modified by the self-assembled IrO(2) colloid to yield the highest turnover frequency ((2.3-2.5) x 10(4) h(-1)) of IrO(2) in the hitherto-reported catalysts for electrochemical water oxidation.  相似文献   

17.
I Markovich  D Mandler 《The Analyst》2001,126(11):1850-1856
A new approach for designing a voltammetric selective electrode is presented. The approach is based on the formation of a disorganised inert self-assembled monolayer (SAM), in which an amphiphilic molecule is incorporated. The latter serves as the selectivity factor, which extracts the analyte. The purpose of these experiments is to study the parameters that affect the capability of a monolayer to host amphiphiles. As model systems we focused on the incorporation of simple amphiphilic molecules (quaternary alkyl ammonium salts), electroactive amphiphiles (dialkylviologens) and a macrocycle ligand (tetramethylcyclam) into octadecyl silane monolayers formed on indium tin oxide (ITO) and purposely made disorganised alkanethiols on gold. We find that basically, the incorporation of amphiphiles into a hydrophobic inert SAM resembles a reversed stationary phase in liquid chromatography and this configuration can be used for designing selective electrodes.  相似文献   

18.
Cd(OH)2 nanowires (NWs) were successfully prepared by room temperature electrogeneration of base using Cd(NO3)2 aqueous electrolyte and Anodic Alumina Membrane (AAM) as template. Cd(OH)2 films have been also deposited on tin-doped indium oxide (ITO) for comparison. SEM analysis shows high quality deposits made of closely packed nanowires (NWs) into AAM and uniform flake-like surface on ITO. XRD analysis reveals that Cd(OH)2 films on ITO are polycrystalline, while the nanowires grow along the preferential directions [1 0 0] and [1 1 0]. Photoelectrochemical measurements show that Cd(OH)2 NWs are photoactive materials with indirect and direct band gap of 2.15 and 2.75 eV, respectively.  相似文献   

19.
《中国化学会会志》2017,64(11):1308-1315
In this study, the galvanic displacement reaction between silver and AuCl4 was carried out to synthesize a series of silver nanowire (Ag NW) @ gold nanoparticle (Au NP) hybrid nanowires. The influence of Ag NW @ Au NP hybrid nanowires on the fluorescence properties of the poly (3‐hexylthiophene) (P3HT) was investigated. The particle sizes of Au NPs on the hybrid nanowires could be adjusted by varying the reaction time and the concentration of the HAuCl4 solution. Furthermore, steady‐state fluorescence measurements showed that the fluorescence intensity of the P3HT films was higher on various Ag NW @ Au NP hybrid nanowires compared to that on a bare silicon substrate. This was due to the increase in the intensity of electromagnetic field by the localized surface plasmon resonances of Au NPs and surface plasmon polaritons of Ag NWs from the hybrid nanowires. The results were further confirmed by the Raman spectra of the P3HT films on different substrates.  相似文献   

20.
Indium-tin oxide (ITO) surfaces have been modified by chemisorption of carboxylic acid functionalized small molecules: ferrocene dicarboxylic acid (1), 3-thiophene acetic acid (2), and 6-{4-[{4'-[[4-(5-carboxy-pentyloxy)-phenyl]-(4-methoxy-phenyl)-amino]-biphenyl-4-yl}-(4-methoxy-phenyl)-amino]-phenoxy}-hexanoic acid (p-OMe)2-TPD-(C5-COOH)2) (3). Voltammetrically determined surface coverages of 1-3 increased in two stages, the first stage completing in minutes, the latter stage taking several hours. Electron-transfer rate coefficients, kS, for the probe molecule ferrocene in acetonitrile likewise increased in two stages with increasing surface coverages of 1, 2, and 3. Fourier transform infrared spectroscopy of In2O3 powders, exposed for long periods to ethanol solutions of each modifier, confirmed the formation of indium oxalate-like surface species. X-ray photoelectron spectroscopy of carboxy-terminated alkanethiol-modified gold surfaces, exposed to these same In2O3(powder)/small molecule modifier solutions, showed the capture of trace levels of indium as a result of the chemisorption of these small molecules, suggesting that slow etching of the ITO surface also occurs during the chemisorption event. Conventional aluminum quinolate/bis-triarylamine organic light-emitting diodes (OLEDs) created on ITO surfaces modified with 1, 2, and 3, with and without an overlayer of PEDOT:PSS (a poly(thiophene)/poly(stryenesulfonate) ITO modifier), showed leakage currents lowered by several orders of magnitude and an increase in OLED device efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号