首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Text

We present a construction of expander graphs obtained from Cayley graphs of narrow ray class groups, whose eigenvalue bounds follow from the Generalized Riemann Hypothesis. Our result implies that the Cayley graph of (Z/qZ) with respect to small prime generators is an expander. As another application, we show that the graph of small prime degree isogenies between ordinary elliptic curves achieves nonnegligible eigenvalue separation, and explain the relationship between the expansion properties of these graphs and the security of the elliptic curve discrete logarithm problem.

Video

For a video summary of this paper, please visit http://www.youtube.com/watch?v=7jwxmKWWsyM.  相似文献   

2.
In this paper, we study queue layouts of iterated line directed graphs. A k-queue layout of a directed graph consists of a linear ordering of the vertices and an assignment of each arc to exactly one of the k queues so that any two arcs assigned to the same queue do not nest. The queuenumber of a directed graph is the minimum number of queues required for a queue layout of the directed graph.We present upper and lower bounds on the queuenumber of an iterated line directed graph Lk(G) of a directed graph G. Our upper bound depends only on G and is independent of the number of iterations k. Queue layouts can be applied to three-dimensional drawings. From the results on the queuenumber of Lk(G), it is shown that for any fixed directed graph G, Lk(G) has a three-dimensional drawing with O(n) volume, where n is the number of vertices in Lk(G). These results are also applied to specific families of iterated line directed graphs such as de Bruijn, Kautz, butterfly, and wrapped butterfly directed graphs. In particular, the queuenumber of k-ary butterfly directed graphs is determined if k is odd.  相似文献   

3.
The clique graph of G, K(G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K-1(G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.  相似文献   

4.
Let P be a set of n points in the plane. A geometric proximity graph on P is a graph where two points are connected by a straight-line segment if they satisfy some prescribed proximity rule. We consider four classes of higher order proximity graphs, namely, the k-nearest neighbor graph, the k-relative neighborhood graph, the k-Gabriel graph and the k-Delaunay graph. For k=0 (k=1 in the case of the k-nearest neighbor graph) these graphs are plane, but for higher values of k in general they contain crossings. In this paper, we provide lower and upper bounds on their minimum and maximum number of crossings. We give general bounds and we also study particular cases that are especially interesting from the viewpoint of applications. These cases include the 1-Delaunay graph and the k-nearest neighbor graph for small values of k.  相似文献   

5.
An affine graph is a pair (G,σ) where G is a graph and σ is an automorphism assigning to each vertex of G one of its neighbors. On one hand, we obtain a structural decomposition of any affine graph (G,σ) in terms of the orbits of σ. On the other hand, we establish a relation between certain colorings of a graph G and the intersection graph of its cliques K(G). By using the results we construct new examples of expansive graphs. The expansive graphs were introduced by Neumann-Lara in 1981 as a stronger notion of the K-divergent graphs. A graph G is K-divergent if the sequence |V(Kn(G))| tends to infinity with n, where Kn+1(G) is defined by Kn+1(G)=K(Kn(G)) for n?1. In particular, our constructions show that for any k?2, the complement of the Cartesian product Ck, where C is the cycle of length 2k+1, is K-divergent.  相似文献   

6.
The square H2 of a graph H is obtained from H by adding new edges between every two vertices having distance two in H. A block graph is one in which every block is a clique. For the first time, good characterizations and a linear time recognition of squares of block graphs are given in this paper. Our results generalize several previous known results on squares of trees.  相似文献   

7.
M. Abreu 《Discrete Mathematics》2008,308(10):1810-1815
Murty [A generalization of the Hoffman-Singleton graph, Ars Combin. 7 (1979) 191-193.] constructed a family of (pm+2)-regular graphs of girth five and order 2p2m, where p?5 is a prime, which includes the Hoffman-Singleton graph [A.J. Hoffman, R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. (1960) 497-504]. This construction gives an upper bound for the least number f(k) of vertices of a k-regular graph with girth 5. In this paper, we extend the Murty construction to k-regular graphs with girth 5, for each k. In particular, we obtain new upper bounds for f(k), k?16.  相似文献   

8.
9.
Given a set R of affine subspaces in Rd of dimension e, its intersection graph G has a vertex for each subspace, and two vertices are adjacent in G if and only if their corresponding subspaces intersect. For each pair of positive integers d and e we obtain the class of (d,e)-subspace intersection graphs. We classify the classes of (d,e)-subspace intersection graphs by containment, for e=1 or e=d−1 or d≤4.  相似文献   

10.
Circulant graphs are an important class of interconnection networks in parallel and distributed computing. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer as well. The integral circulant graph ICGn(D) has the vertex set Zn = {0, 1, 2, … , n − 1} and vertices a and b are adjacent if gcd(a − bn) ∈ D, where D ⊆ {d : dn, 1 ? d < n}. These graphs are highly symmetric, have integral spectra and some remarkable properties connecting chemical graph theory and number theory. The energy of a graph was first defined by Gutman, as the sum of the absolute values of the eigenvalues of the adjacency matrix. Recently, there was a vast research for the pairs and families of non-cospectral graphs having equal energies. Following Bapat and Pati [R.B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129-132], we characterize the energy of integral circulant graph modulo 4. Furthermore, we establish some general closed form expressions for the energy of integral circulant graphs and generalize some results from Ili? [A. Ili?, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009), 1881-1889]. We close the paper by proposing some open problems and characterizing extremal graphs with minimal energy among integral circulant graphs with n vertices, provided n is even.  相似文献   

11.
Independent domination in triangle-free graphs   总被引:1,自引:0,他引:1  
Let G be a simple graph of order n and minimum degree δ. The independent domination numberi(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish upper bounds, as functions of n and δ?n/2, for the independent domination number of triangle-free graphs, and over part of the range achieve best possible results.  相似文献   

12.
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K0(G)=G, Kn+1(G)=K(Kn(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results, it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper, we show two infinite classes of clique-divergent graphs that satisfy G?Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.  相似文献   

13.
In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components.We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Δ-spaces are counterexamples to Brouwer?s Conjecture. Using J.I. Hall?s characterization of finite reduced copolar spaces, we find that the triangular graphs T(m), the symplectic graphs Sp(2r,q) over the field Fq (for any q prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2) and from the elliptic quadrics O(2r,2) over the field F2, respectively, are counterexamples to Brouwer?s Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall?s characterization theorem for Δ-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Δ-spaces and thus, yield other counterexamples to Brouwer?s Conjecture.We prove that Brouwer?s Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue −2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases.We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.  相似文献   

14.
15.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.  相似文献   

16.
An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex in G, such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that have an (h,s,t)-representation is denoted by [h,s,t]. It is well known that the class of chordal graphs corresponds to the class [3, 3, 1]. Moreover, it was proved by Jamison and Mulder that chordal graphs correspond to orthodox-[3, 3, 1] graphs defined below.In this paper, we investigate the class of [h,2,t] graphs, i.e., the intersection graphs of paths in a tree. The [h,2,1] graphs are also known as path graphs [F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete Math. 23 (1978) 211-227] or VPT graphs [M.C. Golumbic, R.E. Jamison, Edge and vertex intersection of paths in a tree, Discrete Math. 55 (1985) 151-159], and [h,2,2] graphs are known as the EPT graphs. We consider variations of [h,2,t] by three main parameters: h, t and whether the graph has an orthodox representation. We give the complete hierarchy of relationships between the classes of weakly chordal, chordal, [h,2,t] and orthodox-[h,2,t] graphs for varied values of h and t.  相似文献   

17.
The product graph Gm*Gp of two given graphs Gm and Gp was defined by Bermond et al. [Large graphs with given degree and diameter II, J. Combin. Theory Ser. B 36 (1984) 32-48]. For this kind of graphs we provide bounds for two connectivity parameters (λ and λ, edge-connectivity and restricted edge-connectivity, respectively), and state sufficient conditions to guarantee optimal values of these parameters. Moreover, we compare our results with other previous related ones for permutation graphs and cartesian product graphs, obtaining several extensions and improvements. In this regard, for any two connected graphs Gm, Gp of minimum degrees δ(Gm), δ(Gp), respectively, we show that λ(Gm*Gp) is lower bounded by both δ(Gm)+λ(Gp) and δ(Gp)+λ(Gm), an improvement of what is known for the edge-connectivity of Gm×Gp.  相似文献   

18.
S. Jukna 《Discrete Mathematics》2009,309(10):3399-3403
We prove that, if a graph with e edges contains m vertex-disjoint edges, then m2/e complete bipartite subgraphs are necessary to cover all its edges. Similar lower bounds are also proved for fractional covers. For sparse graphs, this improves the well-known fooling set lower bound in communication complexity. We also formulate several open problems about covering problems for graphs whose solution would have important consequences in the complexity theory of boolean functions.  相似文献   

19.
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G=(V,E) and an integer k≥0, we ask whether there exists a subset VV with |V|≥k such that the induced subgraph G[V] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time -approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.  相似文献   

20.
This paper finishes the classification of the finite primitive affine distance-transitive graphs by dealing with the only case left open, namely where the generalized Fitting subgroup of the stabilizer of a vertex is modulo scalars a simple group of classical Lie type defined over the characteristic dividing the number of vertices of the graph. All graphs that are found to occur are known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号