首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Semi-parametric estimation of partially linear single-index models   总被引:1,自引:0,他引:1  
One of the most difficult problems in applications of semi-parametric partially linear single-index models (PLSIM) is the choice of pilot estimators and complexity parameters which may result in radically different estimators. Pilot estimators are often assumed to be root-n consistent, although they are not given in a constructible way. Complexity parameters, such as a smoothing bandwidth are constrained to a certain speed, which is rarely determinable in practical situations.In this paper, efficient, constructible and practicable estimators of PLSIMs are designed with applications to time series. The proposed technique answers two questions from Carroll et al. [Generalized partially linear single-index models, J. Amer. Statist. Assoc. 92 (1997) 477-489]: no root-n pilot estimator for the single-index part of the model is needed and complexity parameters can be selected at the optimal smoothing rate. The asymptotic distribution is derived and the corresponding algorithm is easily implemented. Examples from real data sets (credit-scoring and environmental statistics) illustrate the technique and the proposed methodology of minimum average variance estimation (MAVE).  相似文献   

2.
The class of dual ?-divergence estimators (introduced in Broniatowski and Keziou (2009) [5]) is explored with respect to robustness through the influence function approach. For scale and location models, this class is investigated in terms of robustness and asymptotic relative efficiency. Some hypothesis tests based on dual divergence criteria are proposed and their robustness properties are studied. The empirical performances of these estimators and tests are illustrated by Monte Carlo simulation for both non-contaminated and contaminated data.  相似文献   

3.
This paper studies the existence of the uniformly minimum risk unbiased (UMRU) estimators of parameters in a class of linear models with an error vector having multivariate normal distribution or t-distribution, which include the growth curve model, the extended growth curve model, the seemingly unrelated regression equations model, the variance components model, and so on. The necessary and sufficient existence conditions are established for UMRU estimators of the estimable linear functions of regression coefficients under convex losses and matrix losses, respectively. Under the (extended) growth curve model and the seemingly unrelated regression equations model with normality assumption, the conclusions given in the literature can be derived by applying the general results in this paper. For the variance components model, the necessary and sufficient existence conditions are reduced as terse forms.  相似文献   

4.
We consider a panel data semiparametric partially linear regression model with an unknown vector β of regression coefficients, an unknown nonparametric function g(·) for nonlinear component, and unobservable serially correlated errors. The correlated errors are modeled by a vector autoregressive process which involves a constant intraclass correlation. Applying the pilot estimators of β and g(·), we construct estimators of the autoregressive coefficients, the intraclass correlation and the error variance, and investigate their asymptotic properties. Fitting the error structure results in a new semiparametric two-step estimator of β, which is shown to be asymptotically more efficient than the usual semiparametric least squares estimator in terms of asymptotic covariance matrix. Asymptotic normality of this new estimator is established, and a consistent estimator of its asymptotic covariance matrix is presented. Furthermore, a corresponding estimator of g(·) is also provided. These results can be used to make asymptotically efficient statistical inference. Some simulation studies are conducted to illustrate the finite sample performances of these proposed estimators.  相似文献   

5.
In this paper we address the problem of estimating θ1 when , are observed and |θ1θ2|?c for a known constant c. Clearly Y2 contains information about θ1. We show how the so-called weighted likelihood function may be used to generate a class of estimators that exploit that information. We discuss how the weights in the weighted likelihood may be selected to successfully trade bias for precision and thus use the information effectively. In particular, we consider adaptively weighted likelihood estimators where the weights are selected using the data. One approach selects such weights in accord with Akaike's entropy maximization criterion. We describe several estimators obtained in this way. However, the maximum likelihood estimator is investigated as a competitor to these estimators along with a Bayes estimator, a class of robust Bayes estimators and (when c is sufficiently small), a minimax estimator. Moreover we will assess their properties both numerically and theoretically. Finally, we will see how all of these estimators may be viewed as adaptively weighted likelihood estimators. In fact, an over-riding theme of the paper is that the adaptively weighted likelihood method provides a powerful extension of its classical counterpart.  相似文献   

6.
The estimation of a real parameter θ in a linear stochastic differential equation of the simple type is investigated, based on noisy, time continuous observations of Xt. Sufficient conditions on the continuous functions β and σ are given such that the (conditionally normal) Bayes estimators of θ satisfy certain error bounds and are strongly consistent.  相似文献   

7.
We consider one-way classification model in experimental design when the errors have generalized secant hyperbolic distribution. We obtain efficient and robust estimators for block effects by using the modified maximum likelihood estimation (MML) methodology. A test statistic analogous to the normal-theory F statistic is defined to test block effects. We also define a test statistic for testing linear contrasts. It is shown that test statistics based on MML estimators are efficient and robust. The methodology readily extends to unbalanced designs.  相似文献   

8.
In this paper we investigate the admissibility of linear estimators in the multivariate linear model with respect to inequality constraints under matrix loss function. The necessary and sufficient conditions for a linear estimator to be admissible in the class of homogeneous linear estimators and the class of inhomogeneous linear estimators are obtained, respectively.  相似文献   

9.
This paper considers the estimation of the mean vector θ of a p-variate normal distribution with unknown covariance matrix Σ when it is suspected that for a p×r known matrix B the hypothesis θ=Bη, ηRr may hold. We consider empirical Bayes estimators which includes (i) the unrestricted unbiased (UE) estimator, namely, the sample mean vector (ii) the restricted estimator (RE) which is obtained when the hypothesis θ=Bη holds (iii) the preliminary test estimator (PTE), (iv) the James-Stein estimator (JSE), and (v) the positive-rule Stein estimator (PRSE). The biases and the risks under the squared loss function are evaluated for all the five estimators and compared. The numerical computations show that PRSE is the best among all the five estimators even when the hypothesis θ=Bη is true.  相似文献   

10.
In this paper, we consider a linear mixed-effects model with measurement errors in both fixed and random effects and find the moment of estimators for the parameters of interest. The strong consistency and asymptotic normality of the estimators are obtained under regularity conditions. Moreover, we obtain the strong consistent estimators of the asymptotic covariance matrices involved in the limiting theory. Simulations are reported for illustration.  相似文献   

11.
Recently, we proposed variants as a statistical model for treating ambiguity. If data are extracted from an object with a machine then it might not be able to give a unique safe answer due to ambiguity about the correct interpretation of the object. On the other hand, the machine is often able to produce a finite number of alternative feature sets (of the same object) that contain the desired one. We call these feature sets variants of the object. Data sets that contain variants may be analyzed by means of statistical methods and all chapters of multivariate analysis can be seen in the light of variants. In this communication, we focus on point estimation in the presence of variants and outliers. Besides robust parameter estimation, this task requires also selecting the regular objects and their valid feature sets (regular variants). We determine the mixed MAP-ML estimator for a model with spurious variants and outliers as well as estimators based on the integrated likelihood. We also prove asymptotic results which show that the estimators are nearly consistent.The problem of variant selection turns out to be computationally hard; therefore, we also design algorithms for efficient approximation. We finally demonstrate their efficacy with a simulated data set and a real data set from genetics.  相似文献   

12.
For the problem of estimating under squared error loss the location parameter of a p-variate spherically symmetric distribution where the location parameter lies in a ball of radius m, a general sufficient condition for an estimator to dominate the maximum likelihood estimator is obtained. Dominance results are then made explicit for the case of a multivariate student distribution with d degrees of freedom and, in particular, we show that the Bayes estimator with respect to a uniform prior on the boundary of the parameter space dominates the maximum likelihood estimator whenever and d?p. The sufficient condition matches the one obtained by Marchand and Perron (Ann. Statist. 29 (2001) 1078) in the normal case with identity covariance matrix. Furthermore, we derive an explicit class of estimators which, for , dominate the maximum likelihood estimator simultaneously for the normal distribution with identity covariance matrix and for all multivariate student distributions with d degrees of freedom, d?p. Finally, we obtain estimators which dominate the maximum likelihood estimator simultaneously for all distributions in the subclass of scale mixtures of normals for which the scaling random variable is bounded below by some positive constant with probability one.  相似文献   

13.
This note discusses the asymptotic distribution of two scale and location invariant estimators of two scale parameters in the multiple linear regression model. Both of these estimators need an initial estimator of the regression parameter vector. The asymptotic distribution of one of these estimators does not depend on this initial estimator. Both of these estimators are useful in the computation of scale and translation invariant adaptive estimators and M-estimators of the regression parameter vector.  相似文献   

14.
The problem of estimating linear functionals based on Gaussian observations is considered. Probabilistic error is used as a measure of accuracy and attention is focused on the construction of adaptive estimators which are simultaneously near optimal under probabilistic error over a collection of convex parameter spaces. In contrast to mean squared error it is shown that fully rate optimal adaptive estimators can be constructed for probabilistic error. A general construction of such estimators is provided and examples are given to illustrate the general theory.  相似文献   

15.
Some necessary and sufficient conditions are given for two equalities of ordinary least-squares estimators and best linear unbiased estimators of an estimable vector of parametric functions under a general linear model and its transformed linear model to hold  相似文献   

16.
For the multivariate linear model, coordinatewise M-estimators as well as an extension of the Maronna-type M-estimators are considered. Based on the Jure?ková (asymptotic) linearity of M-statistics, the asymptotic distribution theory of the proposed estimators is studied under appropriate regularity conditions, and incorporated in the formulation of some (asymptotic) M-tests of linear hypotheses. Finally, robustness properties of both types of estimators are discussed.  相似文献   

17.
This paper discusses minimum distance (m.d.) estimators of the paramter vector in the multiple linear regression model when the distributions of errors are unknown. These estimators are defined in terms of L2-distances involving certain weighted empirical processes. Their finite sample properties and asymptotic behavior under heteroscedastic, symmetric and asymmetric errors are discussed. Some robustness properties of these estimators are also studied.  相似文献   

18.
The problem of estimating the precision matrix of a multivariate normal distribution model is considered with respect to a quadratic loss function. A number of covariance estimators originally intended for a variety of loss functions are adapted so as to obtain alternative estimators of the precision matrix. It is shown that the alternative estimators have analytically smaller risks than the unbiased estimator of the precision matrix. Through numerical studies of risk values, it is shown that the new estimators have substantial reduction in risk. In addition, we consider the problem of the estimation of discriminant coefficients, which arises in linear discriminant analysis when Fisher's linear discriminant function is viewed as the posterior log-odds under the assumption that two classes differ in mean but have a common covariance matrix. The above method is also adapted for this problem in order to obtain improved estimators of the discriminant coefficients under the quadratic loss function. Furthermore, a numerical study is undertaken to compare the properties of a collection of alternatives to the “unbiased” estimator of the discriminant coefficients.  相似文献   

19.
A finite sample performance measure of multivariate location estimators is introduced based on “tail behavior”. The tail performance of multivariate “monotone” location estimators and the halfspace depth based “non-monotone” location estimators including the Tukey halfspace median and multivariate L-estimators is investigated. The connections among the finite sample performance measure, the finite sample breakdown point, and the halfspace depth are revealed. It turns out that estimators with high breakdown point or halfspace depth have “appealing” tail performance. The tail performance of the halfspace median is very appealing and also robust against underlying population distributions, while the tail performance of the sample mean is very sensitive to underlying population distributions. These findings provide new insights into the notions of the halfspace depth and breakdown point and identify the important role of tail behavior as a quantitative measure of robustness in the multivariate location setting.  相似文献   

20.
In this paper, we consider robust generalized estimating equations for the analysis of semiparametric generalized partial linear mixed models (GPLMMs) for longitudinal data. We approximate the non-parametric function in the GPLMM by a regression spline, and make use of bounded scores and leverage-based weights in the estimating equation to achieve robustness against outliers and influential data points, respectively. Under some regularity conditions, the asymptotic properties of the robust estimators are investigated. To avoid the computational problems involving high-dimensional integrals in our estimators, we adopt a robust Monte Carlo Newton-Raphson (RMCNR) algorithm for fitting GPLMMs. Small simulations are carried out to study the behavior of the robust estimates in the presence of outliers, and these estimates are also compared to their corresponding non-robust estimates. The proposed robust method is illustrated in the analysis of two real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号