首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary There are many examples where non-orthogonality of a basis for Krylov subspace methods arises naturally. These methods usually require less storage or computational effort per iteration than methods using an orthonormal basis (optimal methods), but the convergence may be delayed. Truncated Krylov subspace methods and other examples of non-optimal methods have been shown to converge in many situations, often with small delay, but not in others. We explore the question of what is the effect of having a non-optimal basis. We prove certain identities for the relative residual gap, i.e., the relative difference between the residuals of the optimal and non-optimal methods. These identities and related bounds provide insight into when the delay is small and convergence is achieved. Further understanding is gained by using a general theory of superlinear convergence recently developed. Our analysis confirms the observed fact that in exact arithmetic the orthogonality of the basis is not important, only the need to maintain linear independence is. Numerical examples illustrate our theoretical results.This revised version was published online in June 2005 due to a typesetting mistake in the footnote on page 7.  相似文献   

2.
We discuss a class of deflated block Krylov subspace methods for solving large scale matrix eigenvalue problems. The efficiency of an Arnoldi-type method is examined in computing partial or closely clustered eigenvalues of large matrices. As an improvement, we also propose a refined variant of the Arnoldi-type method. Comparisons show that the refined variant can further improve the Arnoldi-type method and both methods exhibit very regular convergence behavior.  相似文献   

3.
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.  相似文献   

4.
Hyperbolic or more generally definite matrix polynomials are important classes of Hermitian matrix polynomials. They allow for a definite linearization and can therefore be solved by a standard algorithm for Hermitian matrices. They have only real eigenvalues which can be characterized as minmax and maxmin values of Rayleigh functionals, but there is no easy way to test if a given polynomial is hyperbolic or definite or not. Taking advantage of the safeguarded iteration which converges globally and monotonically to extreme eigenvalues we obtain an efficient algorithm that identifies hyperbolic or definite polynomials and enables the transformation to an equivalent definite linear pencil. Numerical examples demonstrate the efficiency of the approach.  相似文献   

5.
For an algebraically closed field FF, we show that any matrix polynomial P(λ)∈F[λ]n×mP(λ)F[λ]n×m, n?mn?m, can be reduced to triangular form, preserving the degree and the finite and infinite elementary divisors. We also characterize the real matrix polynomials that are triangularizable over the real numbers and show that those that are not triangularizable are quasi-triangularizable with diagonal blocks of sizes 1×11×1 and 2×22×2. The proofs we present solve the structured inverse problem of building up triangular matrix polynomials starting from lists of elementary divisors.  相似文献   

6.
Given a pair of distinct eigenvalues (λ1,λ2) of an n×n quadratic matrix polynomial Q(λ) with nonsingular leading coefficient and their corresponding eigenvectors, we show how to transform Q(λ) into a quadratic of the form having the same eigenvalue s as Q(λ), with Qd(λ) an (n-1)×(n-1) quadratic matrix polynomial and q(λ) a scalar quadratic polynomial with roots λ1 and λ2. This block diagonalization cannot be achieved by a similarity transformation applied directly to Q(λ) unless the eigenvectors corresponding to λ1 and λ2 are parallel. We identify conditions under which we can construct a family of 2n×2n elementary similarity transformations that (a) are rank-two modifications of the identity matrix, (b) act on linearizations of Q(λ), (c) preserve the block structure of a large class of block symmetric linearizations of Q(λ), thereby defining new quadratic matrix polynomials Q1(λ) that have the same eigenvalue s as Q(λ), (d) yield quadratics Q1(λ) with the property that their eigenvectors associated with λ1 and λ2 are parallel and hence can subsequently be deflated by a similarity applied directly to Q1(λ). This is the first attempt at building elementary transformations that preserve the block structure of widely used linearizations and which have a specific action.  相似文献   

7.
ADI preconditioned Krylov methods for large Lyapunov matrix equations   总被引:1,自引:0,他引:1  
In the present paper, we propose preconditioned Krylov methods for solving large Lyapunov matrix equations AX+XAT+BBT=0. Such problems appear in control theory, model reduction, circuit simulation and others. Using the Alternating Direction Implicit (ADI) iteration method, we transform the original Lyapunov equation to an equivalent symmetric Stein equation depending on some ADI parameters. We then define the Smith and the low rank ADI preconditioners. To solve the obtained Stein matrix equation, we apply the global Arnoldi method and get low rank approximate solutions. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approaches.  相似文献   

8.
We develop a general framework for perturbation analysis of matrix polynomials. More specifically, we show that the normed linear space Lm(Cn×n) of n-by-n matrix polynomials of degree at most m provides a natural framework for perturbation analysis of matrix polynomials in Lm(Cn×n). We present a family of natural norms on the space Lm(Cn×n) and show that the norms on the spaces Cm+1 and Cn×n play a crucial role in the perturbation analysis of matrix polynomials. We define pseudospectra of matrix polynomials in the general framework of the normed space Lm(Cn×n) and show that the pseudospectra of matrix polynomials well known in the literature follow as special cases. We analyze various properties of pseudospectra in the unified framework of the normed space Lm(Cn×n). We analyze critical points of backward errors of approximate eigenvalues of matrix polynomials and show that each critical point is a multiple eigenvalue of an appropriately perturbed polynomial. We show that common boundary points of components of pseudospectra of matrix polynomials are critical points. As a consequence, we show that a solution of Wilkinson’s problem for matrix polynomials can be read off from the pseudospectra of matrix polynomials.  相似文献   

9.
We develop first order eigenvalue expansions of one-parametric perturbations of square singular matrix polynomials. Although the eigenvalues of a singular matrix polynomial P(λ) are not continuous functions of the entries of the coefficients of the polynomial, we show that for most perturbations they are indeed continuous. Given an eigenvalue λ0 of P(λ) we prove that, for generic perturbations M(λ) of degree at most the degree of P(λ), the eigenvalues of P(λ)+?M(λ) admit covergent series expansions near λ0 and we describe the first order term of these expansions in terms of M(λ0) and certain particular bases of the left and right null spaces of P(λ0). In the important case of λ0 being a semisimple eigenvalue of P(λ) any bases of the left and right null spaces of P(λ0) can be used, and the first order term of the eigenvalue expansions takes a simple form. In this situation we also obtain the limit vector of the associated eigenvector expansions.  相似文献   

10.
For a given nonderogatory matrix A, formulas are given for functions of A in terms of Krylov matrices of A. Relations between the coefficients of a polynomial of A and the generating vector of a Krylov matrix of A are provided. With the formulas, linear transformations between Krylov matrices and functions of A are introduced, and associated algebraic properties are derived. Hessenberg reduction forms are revisited equipped with appropriate inner products and related properties and matrix factorizations are given.  相似文献   

11.
Alternating matrix polynomials, that is, polynomials whose coefficients alternate between symmetric and skew-symmetric matrices, generalize the notions of even and odd scalar polynomials. We investigate the Smith forms of alternating matrix polynomials, showing that each invariant factor is an even or odd scalar polynomial. Necessary and sufficient conditions are derived for a given Smith form to be that of an alternating matrix polynomial. These conditions allow a characterization of the possible Jordan structures of alternating matrix polynomials, and also lead to necessary and sufficient conditions for the existence of structure-preserving strong linearizations. Most of the results are applicable to singular as well as regular matrix polynomials.  相似文献   

12.
We study the properties of palindromic quadratic matrix polynomials φ(z)=P+Qz+Pz2, i.e., quadratic polynomials where the coefficients P and Q are square matrices, and where the constant and the leading coefficients are equal. We show that, for suitable choices of the matrix coefficients P and Q, it is possible to characterize by means of φ(z) well known matrix functions, namely the matrix square root, the matrix polar factor, the matrix sign and the geometric mean of two matrices. Finally we provide some integral representations of these matrix functions.  相似文献   

13.
We discuss the eigenvalue problem for general and structured matrix polynomials which may be singular and may have eigenvalues at infinity. We derive condensed forms that allow (partial) deflation of the infinite eigenvalue and singular structure of the matrix polynomial. The remaining reduced order staircase form leads to new types of linearizations which determine the finite eigenvalues and corresponding eigenvectors. The new linearizations also simplify the construction of structure preserving linearizations.  相似文献   

14.
Estimates for the condition number of a matrix are useful in many areas of scientific computing, including: recursive least squares computations, optimization, eigenanalysis, and general nonlinear problems solved by linearization techniques where matrix modification techniques are used. The purpose of this paper is to propose anadaptiveLanczosestimator scheme, which we callale, for tracking the condition number of the modified matrix over time. Applications to recursive least squares (RLS) computations using the covariance method with sliding data windows are considered.ale is fast for relatively smalln-parameter problems arising in RLS methods in control and signal processing, and is adaptive over time, i.e., estimates at timet are used to produce estimates at timet+1. Comparisons are made with other adaptive and non-adaptive condition estimators for recursive least squares problems. Numerical experiments are reported indicating thatale yields a very accurate recursive condition estimator.Research supported by the US Air Force under grant no. AFOSR-88-0285.Research supported by the US Army under grant no. DAAL03-90-G-105.Research supported by the US Air Force under grant no. AFOSR-88-0285.  相似文献   

15.
Block-iterative methods for consistent and inconsistent linear equations   总被引:1,自引:0,他引:1  
Summary We shall in this paper consider the problem of computing a generalized solution of a given linear system of equations. The matrix will be partitioned by blocks of rows or blocks of columns. The generalized inverses of the blocks are then used as data to Jacobi- and SOR-types of iterative schemes. It is shown that the methods based on partitioning by rows converge towards the minimum norm solution of a consistent linear system. The column methods converge towards a least squares solution of a given system. For the case with two blocks explicit expressions for the optimal values of the iteration parameters are obtained. Finally an application is given to the linear system that arises from reconstruction of a two-dimensional object by its one-dimensional projections.  相似文献   

16.
Using two different elementary approaches we derive a global and a local perturbation theorem on polynomial zeros that significantly improve the results of Ostrowski (Acta Math 72:99–257, 1940), Elsner et al. (Linear Algebra Appl 142:195–209, 1990). A comparison of different perturbation bounds shows that our results are better in many cases than the similar local result of Beauzamy (Can Math Bull 42(1):3–12, 1999). Using the matrix theoretical approach we also improve the backward stability result of Edelman and Murakami (Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, SIAM, Philapdelphia, 1994; Math Comput 64:210–763, 1995).  相似文献   

17.
In the first part, we obtain two easily calculable lower bounds for ‖A-1‖, where ‖·‖ is an arbitrary matrix norm, in the case when A is an M-matrix, using first row sums and then column sums. Using those results, we obtain the characterization of M-matrices whose inverses are stochastic matrices. With different approach, we give another easily calculable lower bounds for ‖A-1 and ‖A-11 in the case when A is an M-matrix. In the second part, using the results from the first part, we obtain our main result, an easily calculable upper bound for ‖A-11 in the case when A is an SDD matrix, thus improving the known bound. All mentioned norm bounds can be used for bounding the smallest singular value of a matrix.  相似文献   

18.
There is a well-established instability index theory for linear and quadratic matrix polynomials for which the coefficient matrices are Hermitian and skew-Hermitian. This theory relates the number of negative directions for the matrix coefficients which are Hermitian to the total number of unstable eigenvalues for the polynomial. Herein we extend the theory to ?-even matrix polynomials of any finite degree. In particular, unlike previously known cases we show that the instability index depends upon the size of the matrices when the degree of the polynomial is greater than two. We also consider Hermitian matrix polynomials, and derive an index which counts the number of eigenvalues with nonpositive imaginary part. The results are refined if we consider the Hermitian matrix polynomial to be a perturbation of a ?-even polynomials; however, this refinement requires additional assumptions on the matrix coefficients.  相似文献   

19.
A matrix can be modified by an additive perturbation so that it commutes with any given matrix. In this paper, we discuss several algorithms for computing the smallest perturbation in the Frobenius norm for a given matrix pair. The algorithms have applications in 2-D direction-of-arrival finding in array signal processing. The work of first author was supported in part by NSF grant CCR-9308399. The work of the second author was supported in part by China State Major Key Project for Basic Researches.  相似文献   

20.
The aim of the paper is to compile and compare basic theoretical facts on Krylov subspaces and block Krylov subspaces. Many Krylov (sub)space methods for solving a linear system Ax=b have the property that in exact computer arithmetic the true solution is found after ν iterations, where ν is the dimension of the largest Krylov subspace generated by A from r0, the residual of the initial approximation x0. This dimension is called the grade of r0 with respect to A. Though the structure of block Krylov subspaces is more complicated than that of ordinary Krylov subspaces, we introduce here a block grade for which an analogous statement holds when block Krylov space methods are applied to linear systems with multiple, say s, right-hand sides. In this case, the s initial residuals are bundled into a matrix R0 with s columns. The possibility of linear dependence among columns of the block Krylov matrix , which in practical algorithms calls for the deletion (or, deflation) of some columns, requires extra care. Relations between grade and block grade are also established, as well as relations to the corresponding notions of a minimal polynomial and its companion matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号