首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. This indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.  相似文献   

2.
The high-pressure iron borate α-FeB2O4 was synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. The monoclinic iron borate crystallizes with eight formula units in the space group P21/c with the lattice parameters a=715.2(2), b=744.5(2), c=862.3(2) pm, and β=94.71(3)°. The compound is built up exclusively from corner-sharing BO4-tetrahedra, isotypic to the monoclinic phases β-SrGa2O4, CaAl2O4-II, and CaGa2O4. Additionally, the structure is closely related to the orthorhombic compound BaFe2O4. The structure consists of layers of six-membered rings, which are interconnected to a three-dimensional network. The iron cations are coordinated by six and seven oxygen atoms. Next to synthesis and crystal structure of the new high-pressure borate, structural coherences to other structure types are discussed.  相似文献   

3.
The coordination and structure changes in LiBO2 have been studied at high pressure and temperature up to 5 GPa and 1500 °C using in-situ high-pressure differential thermal analysis, infrared absorption spectra and X-ray diffraction. The layer framework structure of α-LiBO2 is found to be compressed easily along the direction of c-axis, resulting in the formation of tetra-coordinated BO4 units. The phase transition boundaries between α- and γ-LiBO2 as well as between amorphous LiBO2 hydrate and γ-LiBO2 have negative pressure–temperature slopes. The conditions for transformation from α- to γ-LiBO2 are lower than that necessary to transform amorphous LiBO2 hydrate to γ-LiBO2. Moreover, the melting curve of LiBO2 has also been determined and has a positive pressure–temperature slope. Upon quenching from high pressure, LiBO2 may not contain [3]B–O–[3]B rings but contain more fraction of [4]B units with increasing pressure.  相似文献   

4.
The high-pressure structures and properties of MH2 (M = Nb, Ta) are explored through an ab initio evolutionary algorithm for crystal structure prediction and first-principles calculations. It is found that NbH2 undergoes a phase transition from a cubic Fm3¯m structure with regular NbH8 cubes to an orthorhombic Pnma structure with fascinating distorted NbH9 tetrakaidecahedrons at 48.8 GPa, while the phase transition pressure of TaH2 from a hexagonal P63mc phase with slightly distorted TaH7 decahedron to an orthorhombic Pnma phase with attractive distorted TaH9 tetrakaidecahedrons is about 90.0 GPa. Besides, the calculated electronic band structure and density of states demonstrate that all of these structures are metallic. The Poisson’s ratio, electron localization function, and Bader charge analysis suggest that these phases possess dominant ionic bonding character with the effective charges transferring from the metal atom to H. From our electron–phonon calculations, the calculated superconducting critical temperature Tc of the Pnma-NbH2 is 6.903 K at 50 GPa. Finally, via the quasi-harmonic approximation method, the phase diagrams at pressure up to 300 GPa and temperature up to 1000 K of MH2 (M = Nb, Ta) are established, where the transition pressure of Fm3¯m-NbH2 → Pnma-NbH2 and P63mc-TaH2 → Pnma-TaH2 were found to decrease with increasing temperature.  相似文献   

5.
We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ∼30 nm) and 10 mol % Fe-doped tin dioxide (particle size ∼18 nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ∼13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a cubic structure at ∼24 GPa. The evolution of the lattice parameters with pressure and the room-temperature equations of state are reported for the different phases. The reported results suggest that the partial substitution of Sn by Fe induces an enhancement of the bulk modulus of SnO2. Results are compared with previous studies on bulk and nanocrystalline SnO2. The effects of pressure on Sn-O bonds are also analyzed.  相似文献   

6.
The La–Si binary phase diagram under a high pressure of 13.5 GPa was experimentally constructed. New superconducting silicides LaSi5 and LaSi10 were found, which have peritectic decomposition temperatures at 1000 and 750 °C, respectively. The single crystal X-ray structural analysis revealed that there are two polymorphs in LaSi5. The α-form obtained by heating a molar mixture of LaSi2 and 3 Si at about 700 °C or by a rapid cooling from 1000 °C under pressure crystallizes with the space group C2/m and the lattice parameters a=15.11(3), b=4.032(6), c=8.26(1) Å, and β=109.11(1)°. The β-form obtained by a slow cooling from 800–950 °C to 600 °C under pressure has the same space group but with slightly different lattice parameters, a=14.922(7), b=3.906(2), c=8.807(4) Å, and β=107.19(1)°. The β-form is formed during the incomplete transformation of the α-form on cooling, and has always been obtained as a mixture with the α-form. The compound can be characterized as a Zintl phase with a polyanionic framework with large tunnels running along the b axis hosting lanthanum ions. In the β-form, three of the five Si sites are disordered. The two polymorphs contain one dimensional sila-polyacene ribbons, Si ladder polymer, running along the b axis. The α-form showed superconductivity with the transition temperature Tc of 11.5 K. LaSi10 crystallizes with the space group 63/mmc and the lattice parameters a=9.623(4), c=4.723(3) Å. It is composed of La containing Si18 polyhedra (La@Si18) of hexagonal beer-barrel shape, which form straight columns by stacking along the c-axis via face sharing. One-dimensional columns of La@Si18 barrels are edge-shared, and bundled with infinite Si trigonal bipyramid chains via corner sharing. The Si atoms in the straight chains have a five-fold coordination. LaSi10 became a superconductor with Tc=6.7 K. The ab initio calculation of the electric band structures showed that α-LaSi5 and LaSi10 are metallic, and the conduction electrons mainly come from Si-3p orbitals.  相似文献   

7.
The structure of orthorhombic rare earth titanates of La2TiO5 and Nd2TiO5, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a×b×2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO5 polyhedra remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.  相似文献   

8.
X-ray diffraction and Mössbauer spectroscopy were employed to investigate structural stability of Fe2TiO4 under high pressure. Measurements were performed up to about 24 GPa at room temperature using diamond anvil cell. Experimental results demonstrate that Fe2TiO4 undergoes a series of phase transitions from cubic (Fd3?m) to tetragonal (I41/amd) at 8.7 GPa, and then to orthorhombic structure (Cmcm) at 16.0 GPa. The high-pressure phase (Cmcm) of Fe2TiO4 is kept on decompression to ambient pressure. In all polymorphs of Fe2TiO4, iron cations present a high-spin ferrous property without electric charge exchange with titanium cations at high pressure supported by Mössbauer evidences.  相似文献   

9.
The structure of bis(dimethylammonium) pentachloroantimonate(III), [(CH3)2NH2]2[SbCl5], BDP, was studied at 15 K and ambient pressure by single-crystal X-ray diffraction as well as at ambient temperature and high pressures up to 4.87(5) GPa by Raman spectroscopy. BDP crystallizes in the orthorhombic Pnma space group with a=8.4069(4), b=11.7973(7), c=14.8496(7) Å, and Z=4; R1=0.0381, wR2=0.0764. The structure consists of distorted [SbCl6]3− octahedra forming zig-zag [{SbCl5}n]2n chains that are cross-linked by dimethylammonium [(CH3)2NH2]+ cations. The organic and inorganic substructures are bound together by the N-H…Cl hydrogen bonds. The distortions of [SbCl6]3− units increase, partly due to the influence of the hydrogen bonds which became stronger, with decreasing temperature. The preliminary room temperature, high-pressure X-ray diffraction experiments suggest that BDP undergoes a first-order phase transition below ca. 0.44(5) GPa that destroys single-crystal samples. The transition is accompanied by changes in the intensities and positions of the Raman lines below 400 cm−1.  相似文献   

10.
LiFePO4 material was synthesized at 670 °C in an Ar atmosphere using a sol–gel method. This material showed a well developed XRD pattern (orthorhombic structure, Pnma) without any peaks at 2θ = 41°, indicating the absence of FeP or metallic Fe2P impurities. The Li/LiFePO4 cell showed a high initial discharge capacity of more than 150 mA h/g and no capacity decrease until the 70th cycle (>99.9%). This cell also exhibits excellent cycle performance at high current densities of over 30C, without any surface treatment or carbon coating onto the LiFePO4 particles.  相似文献   

11.
Orthorhombic OsB2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB2. An analysis of the calculated enthalpy shows that orthorhombic OsB2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 63/mmc structure (high-pressure phase) is stable for OsB2. We expect the phase transition can be further confirmed by the experimental work.  相似文献   

12.
The crystal structure of the Pb4Mn9O20 compound (previously known as “Pb0.43MnO2.18”) was solved from powder X-ray diffraction, electron diffraction, and high resolution electron microscopy data (S.G. Pnma, a=13.8888(2) Å, b=11.2665(2) Å, c=9.9867(1) Å, RI=0.016, RP=0.047). The structure is based on a 6H (cch)2 close packing of pure oxygen “h”-type (O16) layers alternating with mixed “c”-type (Pb4O12) layers. The Mn atoms occupy octahedral interstices formed by the oxygen atoms of the close-packed layers. The MnO6 octahedra share edges within the layers, whereas the octahedra in neighboring layers are linked through corner sharing. The relationship with the closely related Pb3Mn7O15 structure is discussed. Magnetization measurements reveal a peculiar magnetic behavior with a phase transition at 52 K, a small net magnetization below the transition temperature, and a tendency towards spin freezing.  相似文献   

13.
In this paper, we present results of high-pressure Raman scattering studies in β-MgMoO4 from atmospheric to 8.5 GPa. The experiments were carried out using methanol–ethanol as pressure medium. By analyzing the pressure dependence of the Raman data (change in the number of lattice modes, splitting of bands and wavenumber discontinuities) we were able to observe a phase transition undergone by the β-MgMoO4 at 1.4 GPa, which is only completed at ∼5 GPa. The transition was observed to be irreversible and the modifications in the Raman spectra were attributed to the changes in coordination of Mo ions from tetrahedral to octahedral. The transition possibly changes the original C2/m symmetry to C2/m or to P2/c. Implication on the phase transition for similar molybdate structures, such as α-MnMoO4, is also highlighted.  相似文献   

14.
Summary Using a high pressure X-ray camera Cu2HgI4 was subjected at room temperature to pressures up to about 8 GPa. A hexagonal high pressure phase (a=8.28 (2) Å,c=3.40 (0) Å, space group P lm,Z=1) could be detected. This phase shows a reversible transformation with pressure hysteresis. The transition occurs at 7 GPa when the pressure is increased but at 6 GPa when the pressure is decreased.
Hexagonale Hochdruckphase von Kupfer(I)tetraiodomercurat (Cu2HgI4)
Zusammenfassung Cu2HgI4 wurde in einer Hochdruckkamera bei Raumtemperatur mit einem Druck bis zu 8 GPa belastet. Dabei bildete sich eine hexagonale Hochdruckmodifikation (a=8.28 (2) Å,c=3.40 (0) Å, Raumgruppe P lm,Z=1). Für diese Phase wurde eine reversible Umwandlung mit Druckhysterese festgestellt. Mit steigendem Druck findet die Umwandlung bei 7 GPa mit sinkendem Druck jedoch bei 6 GPa statt.
  相似文献   

15.
The infrared and Raman spectra of crystalline tetra-n-propylammonium bromide, (n-C3H7)4NBr, have been measured in the 3000 – 700 cm−1 region and vibrational assignments are proposed in part on the basis of the known crystal structure. Pressure-tuning infrared and Raman studies of this material were also undertaken using a diamond-anvil cell. There is a pressure-induced phase transition occurring between 1.8 and 2.1 GPa, which is most likely a second-order transition. Some differences are noted between the infrared data reported here and those given in an earlier high-pressure infrared study. The spectroscopic results will be useful in examining zeolites involving (n-C3H7)4NBr as a template.  相似文献   

16.
BaVSe3 has been synthesized and its crystal structure determined at 293(2)°K. The structure was solved in the hexagonal space group P63/mmc (D46h), with a = 6.9990(11) and c = 5.8621(13) Å. Scans (2 Θ) of a polycrystalline sample revealed that BaVSe3 undergoes a transition to an orthorhombic unit cell (b′ 31/2 a, aa, cc) at 303(5)°K. Magnetic susceptibility measurements between 4 and 300°K indicate that BaVSe3 is paramagnetic down to 41(1)°K, where magnetic ordering occurs, with a magnetic moment in the ordered phase of 0.2 μB per vanadium atom. The orthorhombic lattice distortion may be caused by the “freezing in” of “soft” vibrational modes.  相似文献   

17.
The structural evolution with pressure of six perovskites in the system La1−xNdxGaO3 with x=0.00, 0.06, 0.12, 0.20, 0.62 and 1.00 have been determined by single-crystal diffraction. At room pressure, all six samples have Pbnm symmetry. The room-pressure bulk moduli vary only slightly with composition, between K0T=169(4) and 177(2) GPa, with . As pressure is increased there is significant compression of the octahedral Ga–O bonds, the tilts of the GaO6 octahedra decrease and the structures evolve towards higher symmetry. At room conditions the average Ga–O bond length increases with increasing compositional parameter x. However, the GaO6 become stiffer with increasing x; the Ga–O bonds thus become stiffer as they become longer. Bond strengths in the octahedra in perovskites are therefore not a simple function of bond lengths but depend also upon the extra-framework cation.Phase transitions to R-3c symmetry occur at 2.2 GPa in end-member LaGaO3, at 5.5 GPa in the x=0.06 sample, at 7.8 GPa for x=0.12, and at 12 GPa for x=0.20. No evidence of the transition in the x=0.62 or 1.00 samples was found by X-ray diffraction to 9.4 or 8.0 GPa, respectively, or by Raman measurements of NdGaO3 up to 16 GPa. The transition pressure therefore increases with increasing Nd content (increasing x) at approximately 0.45 GPa per 0.01 increment in x, at least up to x=0.20. Compression of the R-3c phase of LaGaO3 above the transition results in no significant changes in the tilt angle of the octahedra. The structural behavior of all six samples at high pressures is the result of the GaO6 octahedra being softer than the extra-framework (La, Nd)O12 site. The results therefore demonstrate that the evolution of solid-solution perovskites at high pressures follow the same general principles recently elucidated for end-member compositions.  相似文献   

18.
Cu3(OH)4SO4, obtained by hydrothermal synthesis from copper sulfate and soda in aqueous medium, is isostructural with the corresponding antlerite mineral, orthorhombic, space group Pnma (62), with a=8.289(1) b=6.079(1) and c=12.057(1) Å, V=607.5(2) Å3, Z=4. Its crystalline structure has been refined from X-ray single crystal and powder neutron diffraction data at room temperature. It consists of copper (II) triple chains, running in the b-axis direction and connected to each other by sulfate groups. The magnetic structure, solved from powder neutron diffraction data at 1.4 K below the transition at 5 K evidenced by susceptibility and specific measurements, reveals that, inside a triple chain, the magnetic moments of the copper ions (μB=0.88(5) at 1.4 K) belonging to outer chains are oriented along the c-axis of the nuclear cell, with ferromagnetic order inside a chain and antiferromagnetic order between the two outer chains. No long-range magnetic order is obtained along the central chain with an idle spin behavior.  相似文献   

19.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

20.
The β, β′, γ and α phases of LiFeO2, synthesized as powders, were annealed at different temperatures and characterized by X-ray measurements. The β′ and γ modifications were also studied by time-of-flight neutron diffraction (ISIS Facility, UK). The structure of the β′ phase was refined in the monoclinic C2/c space group (a=8.566(1), b=11.574(2), c=5.1970(5) Å, β=146.064(5)°) to wRp=0.071–0.080 (data from four counter banks). Fe and Li atoms are ordered over two of the four independent sites, and partially disordered over the other two. The ordered Li has a distorted tetrahedral coordination. The γ structure was refined at RT (a=4.047(1), c=8.746(2) Å) and at 570 °C (a=4.082(3), c=8.822(6) Å) in the I41/amd symmetry, showing full order with Li in octahedral coordination at RT, and in a split-atom configuration at high temperature. On annealing, the β′ polymorph was found to transform to γ at 550 °C, thus suggesting that it is a metastable phase. Electrostatics is discussed as the driving force for the αβ′→γ ordering process of LiFeO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号