首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将肌红蛋白(Mb)固定在纳米氧化铝(AAO)模板-金胶复合组装体修饰玻碳电极表面,制得Mb/AAO/Au colloid/GC薄膜电极.在pH=5.4的HAc-NaAc缓冲溶液中,该薄膜电极于-0.21 V(vs.Ag/AgC l)处有一对准可逆的氧化还原峰,为Mb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.在AAO/Au colloid薄膜的微环境中,Mb与玻碳电极间的电子传递明显加快,该Mb/AAO/Au colloid/GC薄膜电极还可用于过氧化氢和溶解氧的催化还原.  相似文献   

2.
《Electroanalysis》2006,18(21):2085-2091
A nanocomposite electrochemical sensing film is assembled on choline (Ch) modified glassy carbon electrode (GCE), which contains multiwalled carbon nanotubes (MWNTs), Nafion cation exchanger, and myoglobin (Mb) or hemoglobin (Hb). The MWNTs provide a 3D porous and conductive network for the enzyme immobilization and Nafion acts as polymeric binder to give cast thin films. Both MWNTs and Nafion provide negative functionalities to bind to the positively charged redox proteins and to attach at the positively charged Ch modified layer, and drive the formation of homogeneous and stable nanocomposite film, the MWNT‐Nafion‐Mb. The nanocomposite film was characterized by field emission scanning electron microscope (FE‐SEM). The Mb in the nanocomposite film showed a pair of well‐defined and nearly reversible cyclic voltammetric peaks at about ?0.32 V vs. SCE at pH 7.0 solution for the heme Fe(III)/Fe(II) redox couple. The immobilized heme proteins can display the features of peroxidase in electrocatalytic reductions of oxygen, hydrogen peroxide, nitric oxide, trichloroacetic acid (TCA), and bromate.  相似文献   

3.
Heme proteins were immobilized on glass carbon electrodes by poly (N-isopropylac-yamide-co-3-methacryloxy-propyl-trimethoxysilane) (PNM) and exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks at about -0.35 V versus a saturated calomel electrode in pH 7.0 buffer solution, corresponding to hemeFe(III)+e-->hemeFe(II). Some electrochemical parameters were calculated by performing nonlinear regression analysis of square wave voltammetry (SWV) experimental data. The formal potential was linearly dependent on pH, indicating the electron transfer of Fe(III)/Fe(II) redox couple accompanied by the transfer of proton. Ultraviolet visible and Fourier transform infrared spectra suggested that the conformation of proteins in the PNM films retained the essential feature of its native secondary structure. Atomic force microscopy images demonstrated the existence of interaction between heme proteins and PNM. N,N-dimethylformamide (DMF) played an important role in immobilizing proteins and enhancing electron transfer between proteins and electrodes. Electrochemical catalytic reductions of hydrogen peroxide and trichloroacetic acid by proteins entrapped in PNM film were also discussed, showing the potential applicability of the film modified electrodes as a biosensor.  相似文献   

4.
《Analytical letters》2012,45(13):2103-2115
Abstract

Direct electrochemistry and electrocatalysis of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), incorporated in polyethylene glycol (PEG) films, were studied by cyclic voltammetry. The two proteins exhibited a pair of well‐defined, quasi‐reversible cyclic voltammetric peaks with the apparent formal potential at about ?0.21 V (Hb) and ?0.22 V (Mb), respectively, vs. saturated calomel electrode (SCE) in pH 5.0 acetate buffer solution, characteristic of the h eme Fe(III)/Fe(II) redox couples, indicating enhanced electron transfer between the proteins and the substrate electrode in the PEG film environment. The protein–PEG films could also exhibit excellent stability. Meanwhile, positions of Soret absorption band of the proteins in the PEG films suggested that the heme proteins kept their secondary structure similar to their native state in the medium pH range. Oxygen, trichloroacetic acid, nitric oxide, and hydrogen peroxide could all be catalytically reduced by Hb or Mb in PEG films.  相似文献   

5.
Horseradish peroxidase (HRP) was incorporated in dipalmitoylphosphatidic acid (DPPA) to form a film and the film was modified on pyrolytic graphite electrode. UV-Vis spectra suggested that HRP in the film could keep its secondary structure similar to the native state. A pair of stable, well-defined, and quasi-reversible cyclic voltammetric peaks was observed with the formal potential at -276.2 mV (vs. saturated calomel electrode), characteristic of heme Fe(III)/Fe(II) redox couple of HRP. The apparent heterogeneous electron transfer rate constant and other electrochemical parameters were presented. The catalytic activity of HRP in DPPA film toward oxygen, hydrogen peroxide and nitric oxide were also examined.  相似文献   

6.
In this study, the influence of the film structure was investigated on the electrocatalytic oxygen reduction at GC electrodes covered with porphyrin and metalloporphyrin rings via the diazonium modification method. For that purpose, primarily, tetraphenylporphyrin (TPP) films on GC electrode surfaces were prepared by electroreduction of in situ generated diazonium salts of 5‐(4‐aminophenyl)‐10,15,20‐triphenylporphyrin (APP) and 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin (TAPP) molecules. Next, the formation of metalloporphyrin films on the modified surfaces was accomplished through the complexation reactions of surface porphyrin rings with metal ions in the salt solutions containing Mn(II), Fe(III) and Co(II) ions. The resulting porphyrin and metalloporphyrin layers were identified with XPS and ICP‐MS. The electrochemical barrier properties of the films on GC surfaces were examined by cyclic voltammetry in K3Fe(CN)6 aqueous solution. The electrocatalytic abilities of the resulting films were also investigated for the oxygen electrochemical reduction by employing cyclic voltammetry in PBS solutions saturated with oxygen. The results showed that the oxygen reduction potentials on modified GC electrodes were shifted to less negative potentials compared to that of bare GC electrode. Also, it was obtained that the oxygen reduction reaction was more effective on the GC electrodes modified with TPP rings by using TAPP molecules than those prepared by using APP molecules.  相似文献   

7.
Direct electrochemistry and electrocatalysis of heme proteins, such as hemoglobin (Hb), myoglobin (Mb), and horseradish peroxidase (HRP), incorporated in gluten biopolymer films cast on pyrolytic graphite (PG) electrodes, were studied by voltammetry and amperometry. All the three protein-gluten films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks at about −0.28 V versus saturated calomel electrode (SCE) in pH 5.5 buffers, respectively, characteristic of the heme Fe(III)/Fe(II) redox couples, indicating enhanced electron transfer between the proteins and PG electrodes in a gluten film environment. The protein-gluten hydrogel films showed excellent stability. Positions of Soret absorption band of protein-gluten films suggested that the heme proteins kept their secondary structure similar to their native state in the films in the medium pH range. The heme proteins in gluten films were act as a biologic catalyst to catalyze reduction of oxygen or hydrogen peroxide. The voltammetric or amperometric responses of H2O2 at the protein-gluten film electrodes could be used to determine the concentration of H2O2 in solution.  相似文献   

8.
Qing Lu 《Talanta》2010,82(4):1344-248
A novel electrochemical sensing system for direct electrochemistry-based hydrogen peroxide biosensor was developed that relied on the virtues of excellent biocompatibility, conductivity and high sensitivity to the local perturbations of single-layer graphene nanoplatelet (SLGnP). To demonstrate the concept, the horseradish peroxidase (HRP) enzyme was selected as a model to form the SLGnP-TPA (tetrasodium 1,3,6,8-pyrenetetrasulfonic acid)-HRP composite film. The single-layer graphene composite film displayed a pair of well-defined and good reversible cyclic voltammetric peak for Fe(III)/Fe(II) redox couple of HRP, reflecting the enhancement for the direct electron transfer between the enzyme and the electrode surface. Analysis using electrochemical impedance spectroscopy (EIS) revealed that electrostatic attractions existed between graphene monolayers and enzyme molecules. The intimate graphene and enzyme interaction was also observed using scanning electron microscopy (SEM), which resulted in the special properties of the composite film. Ultraviolet visible spectroscopy (UV-vis) indicated the enzyme in the composite film retained its secondary structure similar to the native state. The composite film demonstrated excellent electrochemical responses for the electrocatalytic reduction of hydrogen peroxide (H2O2), thus suggesting its great potential applications in direct electrochemistry-based biosensors.  相似文献   

9.
A new carbon ionic liquid paste bioelectrode was fabricated by mixing hemoglobin (Hb) with graphite powder, ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) and liquid paraffin homogeneously. Nafion film was cast on the electrode surface to improve the stability of bioelectrode. Direct electrochemistry of Hb in the bioelectrode was carefully investigated. Cyclic voltammetric results indicated that a pair of well‐defined and quasi‐reversible electrochemical responses appeared in pH 7.0 phosphate buffer solution (PBS), indicating that direct electron transfer of Hb was realized in the modified electrode. The formal potential (E0′) was calculated as ?0.316 V (vs. SCE), which was the typical characteristic of the electrochemical reaction of heme Fe(III)/Fe(II) redox couple. Based on the cyclic voltammetric results the electrochemical parameters of the electrode reaction were calculated. This bioelectrode showed high electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) with good stability and reproducibility.  相似文献   

10.
Protein-CMC films were made by casting a solution of myoglobin (Mb) or hemoglobin (Hb) and carboxymethyl cellulose (CMC) on pyrolytic graphite electrodes. In pH 7.0 buffers, Mb and Hb incorporated in CMC films gave a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about -0.34 V vs. SCE, respectively, characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as apparent standard heterogeneous electron transfer rate constants (k(s)) and formal potentials (E degrees ') were estimated by square wave voltammetry with nonlinear regression analysis. In aqueous solution, stable CMC films absorbed large amounts of water and formed hydrogel. Scanning electron microscopy of the films showed that interaction between Mb or Hb and CMC would make the morphology of dry protein-CMC films different from the CMC films alone. Positions of Soret absorbance band suggest that Mb and Hb in CMC films retain their secondary structure similar to the native states in the medium pH range. Trichloroacetic acid, nitrite, oxygen, and hydrogen peroxide were catalytically reduced at protein-CMC film electrodes.  相似文献   

11.
The direct electron-transfer of myoglobin in a new zwitterionic gemini surfactant film with glassy carbon electrode surface has been investigated. A pair of well-defined and quasi-reversible voltammetric peaks was observed at −0.34 and −0.30 V due to the direct electron-transfer of the redox couple of Mb (FeIII/FeII). The voltammetric responses of myoglobin–surfactant film under different pH and scan rate conditions were obtained. The presence of hydrogen peroxide changed the typical electrochemical behaviors in terms of bioelectrocatalysis of myoglobin to hydrogen peroxide, and a higher sensitive electroanalytical method for the determination of hydrogen peroxide has been developed.  相似文献   

12.
Based on electrostatic interaction and electrodeposition, poly‐anionic deoxyribonucleic acid (DNA), room temperature ionic liquid 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate (BMIMBF4), hemoglobin (Hb) and Poly(diallyldimethylammonium chloride) (PDDA) were successfully assembled into Hb/IL/DNA/PDDA layer‐by‐layer complex films on the surface of ITO electrode. FTIR spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the composite film. The obtained results demonstrated that the Hb molecule in the film kept its native structure and showed its good electrochemical behavior. A pair of well‐defined redox peaks of Hb with the formal potentials (E°′) of ?0.180 V (vs. SCE) was appeared in phosphate buffer solution (PBS, pH 7.0). The Hb/IL/DNA/PDDA/ITO modified electrode also showed an excellent electrocatalytic behavior to the reduction of hydrogen peroxide (H2O2). Therefore, the IL/DNA/PDDA complex film as a novel matrix open up a possibility for further study on the direct electrochemistry of other proteins and the fabrication of the third‐generation electrochemical biosensors.  相似文献   

13.
血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为   总被引:6,自引:0,他引:6  
利用吸附法将血红蛋白(Hb)固定在碳纳米管修饰碳糊电极表面,制成稳定的固载Hb碳纳米管修饰电极,研究了Hb在碳纳米管修饰电极上的直接电化学行为.固载Hb的碳纳米管修饰电极在pH=7.0的PBS(磷酸盐缓冲溶液)中有一对相当可逆的循环伏安氧化还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.式电位为-0.160 V(vs SCE),随扫描速度变化很小.电子转移数为1.021,近似为一个辅基发生电子转移.Hb在碳纳米管修饰电极表面的电子转移常数为0.0816 s-1,远大于亚甲蓝作媒介体时Hb的电子转移反应速率常数.应用于过氧化氢、三氯乙酸和硝基苯等的电催化还原,固定在碳纳米管修饰碳糊电极的血红蛋白表现出稳定且较高的催化活性.  相似文献   

14.
Polynuclear mixed‐valent nickelhexacyanoferrate/phosphomolybdate (NiHCF/PMo), nickel/phosphomolybdate (Ni/PMo) hybrid films were prepared on glassy carbon electrode by multiple scan cyclic voltammetry. Combination of individual components gave the opportunity to fabricate hybrid film with tunable electrochemical and analytical properties compared to individual components. The film growth was monitored using electrochemical quartz crystal microbalance (EQCM). The cyclic voltammogram of the nickelhexacyanoferrate/phosphomolybdate film is characterized by four redox couple whereas nickel/phosphomolybdate hybrid film exhibits three redox couples. Cyclic voltammetric features suggest that the charge transfer process in both films resembles that of surface‐confined redox species. The voltammetric response of nickelhexacyanoferrate/phosphomolybdate film electrode was found to be depending on the pH of the contacting solution. Electrocatalytic behavior of nickel/phosphomolybdate hybrid film coated electrodes toward oxidation of ascorbic acid and reduction of sulfur oxoanion, S2O , was investigated using cyclic voltammetry technique. Analytical application of nickel/phosphomolybdate hybrid film electrode was tested in amperometry and flow injection analysis.  相似文献   

15.
An unmediated hydrogen peroxide (H2O2) biosensor was prepared by co‐immobilizing hemoglobin (Hb) with platinum nanoparticles enhanced poly(chloromethyl thiirane) cross‐linked chitosan (CCCS‐PNs) hybrid film. CCCS could provide a biocompatible microenvironment for Hb and PNs could accelerate the electron transfer between Hb and the electrode. Spectroscopic analysis indicated that the immobilized Hb could maintain its native structure in the CCCS‐PNs hybrid film. Entrapped Hb exhibited direct electrochemistry for its heme Fe(III)/Fe(II) redox couples at ?0.396 V in the CCCS‐PNs hybrid film, as well as peroxidase‐like activity to the reduction of hydrogen peroxide without the aid of an electron mediator.  相似文献   

16.
Stable films made from ionomer poly(ester sulfonic acid) or Eastman AQ29 on pyrolytic graphite (PG) electrodes gave direct electrochemistry for incorporated enzyme horseradish peroxidase (HRP). Cyclic voltammetry of HRP-AQ films showed a pair of well-defined, nearly reversible peaks at about -0.33 V vs. SCE at pH 7.0 in blank buffers, characteristic of HRP heme Fe(III)/Fe(II) redox couple. The electron transfer between HRP and PG electrode was greatly facilitated in AQ films. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry (SWV) with nonlinear regression analysis. Reflectance absorption infrared (RAIR) and UV-Vis absorption spectra demonstrated that HRP retained a near native conformation in AQ films. The embedded HRP in AQ films retained the electrocatalytic activity for oxygen, nitrite and hydrogen peroxide. Possible mechanism of catalytic reduction of H(2)O(2) with HRP-AQ films was proposed.  相似文献   

17.
Sun Z  Li Y  Zhou T  Liu Y  Shi G  Jin L 《Talanta》2008,74(5):1692-1698
In this paper, layer-by-layer (LBL) {MSU/Hb}(n)/PDDA films assembled by alternate adsorption of positively charged hemoglobin (Hb) and negatively charged mesoporous molecular sieves of Al-MSU-S onto a glassy carbon electrode (GCE) were reported. Al-MSU-S was synthesized by the precursor of zeolite Y and ionic liquids 1-hexadecane-3-methylimidazolium bromide (CMIMB) as a template in basic medium. It exhibited larger pore diameter, pore volume and surface area. Direct electrochemical and electrocatalytic properties of Hb in these layer-by-layer films were investigated. A pair of well-defined nearly reversible cyclic voltammetric peaks was observed and the formal potential of the heme Fe(III)/Fe(II) redox couple was found to be -0.295V (vs. SCE). The influences of layer's number and the pH of the external solution to the electron transfer behavior of Hb in {MSU/Hb}(n)/PDDA films were also estimated by cyclic voltammetry and a set of optimized conditions for film fabrication was inferred. The hemoglobin in{MSU/Hb}(n)/PDDA films displayed a good electrocatalytic activity to the reduction of hydrogen peroxide, which had linear current responses from 1.0 x 10(-6) to 1.86 x 10(-4)mol/L with the detection limit of 5.0 x 10(-7)mol/L (S/N=3). The apparent Michaeli-Menten constant (K(m)(app)) was 0.368 mmol/L. Thus, this methodology shows potential application of the preparation of third-generation biosensors.  相似文献   

18.
A 38-base DNA sequence has been detected at 20 pmol L(-1) concentration in 15-35- microL droplets by means of an electrochemical enzyme-amplified sandwich-type assay on a mass-manufacturable screen-printed carbon electrode. Formation of the sandwich brought the horseradish peroxidase-label of the detection sequence into electrical contact with a pre-electrodeposited redox polymer, making the sandwich an electrocatalyst for the reduction of hydrogen peroxide to water at +0.2 V (Ag/AgCl). Sensitivity twenty times better than that of a related system resulted from: 1. fivefold reduction of the noise by substituting the formerly used poly( N-vinyl imidazole)-co-acrylamide comprising redox co-polymer with poly(4-vinyl pyridine)-co-acrylamide comprising redox polymer, enabling use of the electrodes at a more oxidizing potential at which noise (the rate of non-enzyme catalyzed electroreduction currents of dissolved oxygen and hydrogen peroxide) was lower; 2. doubling of the catalytic electroreduction current upon electrodeposition of a second layer of the redox polymer on the capture sequence-containing film; and 3. doubling of the current by increasing the coverage by the capture sequence.  相似文献   

19.
Electrochemical detection of hydrogen peroxide using an edge-plane pyrolytic-graphite electrode (EPPG), a glassy carbon (GC) electrode, and a silver nanoparticle-modified GC electrode is reported. It is shown, in phosphate buffer (0.05 mol L–1, pH 7.4), that hydrogen peroxide cannot be detected directly on either the EPPG or GC electrodes. However, reduction can be facilitated by modification of the glassy-carbon surface with nanosized silver assemblies. The optimum conditions for modification of the GC electrode with silver nanoparticles were found to be deposition for 1 min at –0.5 V vs. Ag from 5 mmol L–1 AgNO3/0.1 mol L–1 TBAP/MeCN, followed by stripping for 2 min at +0.5 V vs. Ag in the same solution. A wave, due to the reduction of hydrogen peroxide on the silver nanoparticles is observed at –0.68 V vs. SCE. The limit of detection for this modified nanosilver electrode was 2.0×10–6 mol L–1 for hydrogen peroxide in phosphate buffer (0.05 mol L–1, pH 7.4) with a sensitivity which is five times higher than that observed at a silver macro-electrode. Also observed is a shoulder on the voltammetric wave corresponding to the reduction of oxygen, which is produced by silver-catalysed chemical decomposition of hydrogen peroxide to water and oxygen then oxygen reduction at the surface of the glassy-carbon electrode.  相似文献   

20.
一种新型氧化还原电解液电化学电容器体系   总被引:1,自引:0,他引:1  
以含有Fe3+/Fe2+离子对的H2SO4溶液为电解液, 以多孔炭做电极材料, 就Fe3+/Fe2+离子对在多孔炭纳米孔隙中的电化学行为及准电容效应进行了探讨. 循环伏安测试结果表明, Fe3+/Fe2+离子对在多孔炭电极纳米孔隙中发生了可逆的电化学反应. 恒流充放电结果发现, 加入Fe3+/Fe2+使得充放曲线出现对称的充放电平台, 有效地提高了电化学电容器(EC)的电能存储容量, 其单电极比电容最高达174 mAh•g−1, 比单纯的H2SO4电解液的比电容高109 mAh•g−1, 且有着良好的循环稳定性. 根据实验现象及结果, 探讨了Fe3+/Fe2+离子对在EC电极上的充放电机理, 并提出了一种新的概念——氧化还原电解液电化学电容器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号