首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review about the influence of mobile phase acid-base equilibria on the liquid chromatography retention of protolytic analytes with acid-base properties is presented. The general equations that relate retention to mobile phase pH are derived and the different procedures to measure the pH of the mobile phase are explained. These procedures lead to different pH scales and the relationships between these scales are presented. IUPAC rules for nomenclature of the different pH are also presented. Proposed literature buffers for pH standardization in chromatographic mobile phases are reviewed too. Since relationships between analyte retention and mobile phase pH depends also on the pKa value of the analyte, the solute pKa data in water-organic solvent mixtures more commonly used as chromatographic mobile phase are also reviewed. The solvent properties that produce variation of the pKa values with solvent composition are discussed. Chromatographic examples of the results obtained with the different procedures for pH measurement are presented too. Application to the determination of aqueous pKa values from chromatographic retention data is also critically discussed.  相似文献   

2.
The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.  相似文献   

3.
The measurement of pH in chromatographic mobile phases has been a constant subject of discussion during many years. The pH of the mobile phase is an important parameter that determines the chromatographic retention of many analytes with acid-base properties. In many instances a proper pH measurement is needed to assure the accuracy of retention-pH relationships or the reproducibility of chromatographic procedures. Three different methods are common in pH measurement of mobile phases: measurement of pH in the aqueous buffer before addition of the organic modifier, measurement of pH in the mobile phase prepared by mixing aqueous buffer and organic modifier after pH calibration with standard solutions prepared in the same mobile phase solvent, and measurement of pH in the mobile phase prepared by mixing aqueous buffer and organic modifier after pH calibration with aqueous standard solutions. This review discusses the different pH measurement and calibration procedures in terms of the theoretical and operational definitions of the different pH scales that can be applied to water-organic solvent mixtures. The advantages and disadvantages of each procedure are also presented through chromatographic examples. Finally, practical recommendations to select the most appropriate pH measurement procedure for particular chromatographic problems are given.  相似文献   

4.
The linear-solvent strength (LSS) model of gradient elution has been applied to estimate parameters of lipophilicity and acidity of a series of drugs and model chemicals. Apparent pKa values and log kw values for individual analytes were determined in 2-3 gradient runs. The first experiment (or first two experiments) uses a wide-range organic modifier gradient with pH chosen for suppressed ionization of the analyte. The result of this experiment allows an estimate of contents of organic modifier of the mobile phase (%B) providing the required retention coefficient, k, for the non-ionized analyte. The following experiment is carried out with the latter %B and a pH-gradient of the aqueous component of the eluent that is sufficient to overlap the possible pKa-value of the analyte. The initial pH of the buffer used to make the mobile phase is selected to insure that the analyte is in non-ionized form. The resulting retention time allows an estimate of PKa in a solvent of the selected %B. At the same time, estimates of log kw can also be obtained. The log kw parameter obtained from gradient HPLC by the approach proposed correlated well with the corresponding value obtained by standard procedure of extrapolation of retention data determined in a series of isocratic measurements. Correlation between log kw and the reference parameter of lipophilicity, log P, was very good for a series of test analytes and satisfactory for a structurally diverse series of drugs. The approach supported with specific detection procedures can be recommended for fast screening of lipophilicity of individual components of complex mixtures like those produced by combinatorial chemistry. The values of pKa obtained in a study were found to correlate with the literature pKa data determined in water for a set of aniline derivatives studied. In case of a series of drugs the correlation was less than moderate if the general procedure of pKa determination was applied.  相似文献   

5.
We propose a general simple equation for accurately predicting the retention factors of ionizable compounds upon simultaneous changes in mobile phase pH and column temperature at a given hydroorganic solvent composition. Only four independent experiments provide the input data: retention factors measured in two pH buffered mobile phases at extreme acidic and basic pH values (e. g., at least +/- 2 pH units far from the analyte pK(a)) and at two column temperatures. The equations, derived from the basic thermodynamics of the acid-base equilibria, additionally require the knowledge of the solute pK(a )and enthalpies of acid-base dissociation of both the solute and the buffer components in the hydroorganic solvent mixture. The performance of the predictive model is corroborated with the comparison between theoretical and experimental retention factors of several weak acids and bases of important pharmacological activity, in mobile phases containing different buffer solutions prepared in 25% w/w ACN in water and at several temperatures.  相似文献   

6.
The relationship, delta values, between the two rigorous pH scales, S(S)pH (pH measured in a methanol-water mixture and referred to the same mixture as standard state) and S(W)pH (pH measured in a methanol-water mixture but referred to water as standard state), in several methanol-water mixtures was determined (delta = S(W)pH-S(S)pH). Delta values were measured using a combined glass electrode and a wide set of buffer solutions. The results are consistent with those obtained with the hydrogen electrode. This confirms the aptness of the glass electrode to achieve rigorous pH measurements in methanol-water mixtures. An equation that relates delta and composition of methanol-water mixtures, and allows delta computation at any composition by interpolation, is proposed. Therefore, S(S)pH can be achieved from the experimental S(W)pH value and delta at any mobile phase composition. S(S)pH (or S(W)pH) values are related to the chromatographic retention of ionizable compounds through their thermodynamic acid-base constants in the methanol-water mixture used as mobile phase. These relationships were tested for the retention variation of several acids and bases with the pH of the mobile phase. Therefore, the optimization of the mobile phase acidity for any analyte can be easily reached avoiding the disturbances observed when W(W)pH is used.  相似文献   

7.
The influence of pH and solvent composition of acetonitrile-water mobile phases on the retention of acids and bases on a polymeric stationary phase is studied. Very good relationships between retention and mobile phase pH are obtained if the pH is measured in the proper pH scale. The fit of retention to pH for a particular solvent composition provides the pKa values of the equilibria between the different acid-base species and the retention parameters of these species at this solvent composition. Several models are tested that relate these parameters to solvent composition and properties in order to propose a general model to predict retention for any mobile phase pH and composition.  相似文献   

8.
9.
pH gradient high-performance liquid chromatography (HPLC) is a method of reversed-phase high-performance liquid chromatography suitable for ionogenic substances. It consists in programmed increase during the chromatographic process of the eluting strength of eluent with respect to the analytes separated. On the analogy of the conventional organic modifier gradient reversed-phase HPLC, in the pH gradient approach the eluting strength of the mobile phase increases due to its changing pH: increasing in case of acids or decreasing in case of bases. At the same time the content of organic modifier remains constant. A theory of the pH gradient HPLC has been elaborated. The resulting mathematical model is easily manageable. Its ability to predict changes in retention and separation of analytes following the changes in chromatographic conditions is demonstrated. The pH gradient method is uniquely suitable to determine pKa values of analytes. An equation is presented allowing to calculate pKa values basing on appropriate retention data. The effects on pKa are discussed of the concentration of methanol in the mobile phase. The RP HPLC-derived pKa data correlate to the reference pKa values (w(w)pKa) but are not identical. That may be explained by the effects on the chromatographically determined pKa of the specific interactions of analytes with stationary phases. The proposed pH gradient RP HPLC procedure offers a fast and convenient means to get comparable acidity parameters for larger series of compounds, like drug candidates, also when the analytes are available only in minute amounts and/or as complex mixtures.  相似文献   

10.
There is a need for fast testing of drug candidates for properties of pharmacokinetics and pharmacodynamics importance, in particular lipophilicity and acidity. These two parameters can conveniently be estimated by gradient reversed-phase HPLC. Appropriate conventional organic solvent gradient and the new pH gradient HPLC procedures are presented. The chromatographic parameter of lipophilicity, log kw, can be determined from two organic solvent gradient runs instead of 6-8 runs necessary in the standard isocratic (polycratic) approach. The newly introduced pH gradient reversed-phase HPLC consists in a programmed increase during the chromatographic run of the eluting power of the mobile phase with regards to ionizable analytes. The eluting strength of the mobile phase increases due to its increasing (in case of acidic analytes) or decreasing (basic analytes) pH, whereas the content of organic modifier remains constant. It has been theoretically and experimentally demonstrated that the pKa and log kw values can be evaluated based on retention data from a pH gradient run, combined with appropriate data from two organic solvent gradient runs. The gradient HPLC-derived log kw parameters correlate well with analogous parameters determined isocratically as well as with reference lipophilicity parameter log P (logarithm of n-octanol/water partition coefficient). Also, the HPLC-derived pKa parameters correlate to the literature pKa values (w(w)pKa), conventionally determined by titrations in water. The approach described allows rapid and high-throughput assessment of log kw and pKa for large series of drugs candidates, also when the analytes are available in a form of mixture, e.g. produced by combinatorial synthesis.  相似文献   

11.
An RP-HPLC study for the pKa determination of a series of basic compounds related to caproctamine, a dibenzylaminediamide reversible inhibitor of acetylcholinesterase, is reported. The 2-substituted analogues, bearing substituents with different electronegativity, were analysed by RP-HPLC by using C18 C4 stationary phases with a mobile phase consisting of mixture of acetonitrile and triethylamine phosphate buffer (pH range comprised between 4 and 10). Typical sigmoidal curves were obtained, showing the dependence of the capacity factors upon pH. In general, the retention of the investigated basic analytes increased with increasing of the pH. The inflection point of the pH sigmoidal dependence was used for the dissociation constant determination at a fixed acetonitrile percentage. When plotting pKa vs. percent of acetonitrile in the mobile phase for two representative compounds, linear regression were obtained: the y intercept gave the aqueous pKa(w). The pKa estimation by HPLC method was found to be useful to underline the difference of benzylamine basicity produced by the ortho aromatic substituents. The variation of pKa values (6.15-7.80) within the series of compounds was correlated with the electronic properties of the ortho-substituents through the Hammett sigma parameter, whereas the ability of substituents to accept H-bond was found to play a role in determining the conformational behavior of the molecules.  相似文献   

12.
《Analytica chimica acta》2005,547(2):172-178
A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.  相似文献   

13.
The knowledge of the acid-base equilibria in water-solvent mixtures of both common buffers and analytes is necessary in order to predict their retention as function of pH, solvent composition and temperature. This paper describes the effect of temperature on acid-base equilibria in methanol-water solvent mixtures commonly used as HPLC mobile phases. We measured the delta-correction parameter (delta = sw pH - ss pH = Ej - log sw(gamma)oh) between two pH scales: pH measured in the solvent concerned and referred to the same standard state, ss pH, and the pH measured in that solvent mixture but referred to water as standard state, sw pH, for several methanol compositions in the temperature range of 20-50 degrees C. These determinations suggest that the delta-term depends only on composition of the mixture and on temperature. In water-rich mixtures, for which methanol is below 40% (w/w), delta-term seems to be independent of temperature, within the experimental uncertainties, whereas for methanol content larger than 50% (w/w) the delta-correction decreases as temperature increases. We have attributed this decrease to a large increase in the medium effect when mixtures have more than 50% methanol. The pKa of five weak electrolytes of different chemical nature in 50% methanol-water at 20-50 degrees C are presented: the effect of temperature on pKa was large for amines, pyridine and phenol, but almost no dependence was found for benzoic acid. This indicates that buffers can play a critical role in affecting retention and selectivity in HPLC at temperatures far from 25 degrees C, particularlyfor co-eluted solutes.  相似文献   

14.
The actual mobilities and dissociation constants of acidic and basic pharmaceuticals were determined in methanol. Actual mobilities were derived from the dependence of the effective mobilities of the analytes on the pH of the methanolic background electrolyte solution (pH(MeOH)). The pKa values of the pharmaceuticals in methanol (pK(a,MeOH)) were calculated by non-linear curve fitting to the measured mobility values. It was found that the shift in pKa value (when compounds were transferred from water to methanol) increased with the acidity of the analyte. The average pKa shift for compounds exhibiting acidic properties in water was ca. 5.5 units, and the shift for basic compounds about 2 units. As was shown for a mixture of beta-blockers, the calculated actual mobilities and pKa values can be utilised in the optimisation of pH conditions for separation. The practical value of the method was illustrated by the analysis of urine samples.  相似文献   

15.
In the present work dissociation constants of commonly used buffering species, formic acid, piperazine, tris(hydroxymethyl)–aminomethane, boric acid and carbonate, have been determined for several acetonitrile–water mixtures. From these pKa values a previous model has been successfully evaluated to estimate pH values in acetonitrile–aqueous buffer mobile phases from the aqueous pH and concentration of the above mentioned buffers up to 60% of acetonitrile, and aqueous buffer concentrations between 0.005 (0.001 mol L−1 for formic acid–formate) and 0.1 mol L−1. The relationships derived for the presently studied buffers, together with those established for previously considered buffering systems, allow a general prediction of the pH variation of the most commonly used HPLC buffers when the composition of the acetonitrile–water mobile phase changes during the chromatographic process, such as in gradient elution. Thus, they are an interesting tool that can be easily implemented in general retention models to predict retention of acid–base analytes and optimize chromatographic separations.  相似文献   

16.
17.
The retention of nucleic acid bases and purine derivatives on titania was studied using a 0.4 mM acetic acid–sodium acetate buffer (pH 6.0) and 70% aqueous methanol as mobile phases. We observed that the retention strength of tested analytes on titania was dependent on the structural differences between pyrimidine and purine skeletons and the variety and number of substituents. The retention order was purine derivatives with methyl groups, pyrimidine bases and purine derivatives with hydrophilic functional groups, which were retained most strongly on titania. We concluded that the retention of each analyte was caused by the analyte’s hydrophobicity in the case of purine derivatives with methyl groups and pyrimidine bases. In the case of purine and its derivatives with hydrophilic functional groups, it was considered that the retention was dependent on the analyte’s ability to form chelates, and the variety and number of functional groups on C6 and C2.  相似文献   

18.
Several 8-quinolinol silica gel (QSG) columns were used, with metal-uptake capacities of 10–156 μmol g?1. Various transition and heavy metal ions were used as analytes in nitrate, sulfate, phosphate, citrate, tartrate, oxalate, phthalate, and maleate mobile phases. Metal-ion retention increased with column capacity and pH. Optimum capacity factors were obtained on columns of intermediate capacity (27 and 46 μmol g?1). Retention times decreased with an increase in eluent buffer concentration, typically by half with a doubling of buffer. Evidence is presented for the occurence of mobile-phase complexation of analyte ions by eluent buffer species. Multiple or split peaks were often observed when the analyte solvent differed from the mobile phase. Chromatographic separation of up to six metals on the QSG columns is demonstrated in tartrate and maleate mobile phases.  相似文献   

19.
Optimizing separation of ionizable compounds in order to find robust conditions has become an important part of method development in liquid chromatography. This work is an attempt to explain the observed variations of retention of acid and basic compounds with the organic modifier content in the mobile phase, according to various factors: the type of modifier, the type of buffer, the temperature and of course the type of solute. This is done by considering the variation of the so-called chromatographic pKa which refers to the pH measured in the aqueous medium and is determined from retention data. A procedure is described that accurately relates, from nine experiments, retention to solvent composition and pH. The limits of such a procedure are evaluated and two examples of optimized separations of basic compounds are given.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号